Emissions of methane (CH 4 ), carbon dioxide (CO 2 ), and nitrous oxide (N 2 O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and upland (77%) was divided into 675 grid cells, and each of the cells had unique combination of vegetation, hydrology, soil properties, and topography. Driven by local climate, topography, soil, and vegetation conditions, MIKE SHE was used to generate daily flows as well as water table depth for each grid cell across the watershed. Forest-DNDC was then run for each cell to calculate its biogeochemistry including daily fluxes of the three greenhouse gases (GHGs). The simulated daily average CH 4 , CO 2 and N 2 O flux from the watershed were 17.9 mg C, 1.3 g C and 0.7 mg N m −2 , respectively, during the period from 2003-2007. The average contributions of the wetlands to the CH 4 , CO 2 and N 2 O emissions were about 95%, 20% and 18%, respectively. The spatial and temporal variation in the modeled CH 4 , CO 2 and N 2 O fluxes were large, and closely related to hydrological conditions. To understand the impact of spatial heterogeneity in physical and biogeochemical characteristics of the target watershed on GHG emissions, we used Forest-DNDC in a coarse mode (field scale), in which the entire watershed was set as a single simulated unit, where all hydrological, biogeochemical, and biophysical conditions were considered uniform. The results from the field-scale model differed from those modeled with the watershed-scale model which considered the spatial differences in physical and biogeochemical characteristics of the catchment. This contrast demonstrates that the spatially averaged topographic or biophysical conditions which are inherent with fieldscale simulations could mask "hot spots" or small source areas with inherently high GHGs flux rates. The spatial resolution in conjunction with coupled hydrological and biogeochemical models could play a crucial role in reducing uncertainty of modeled GHG emissions from wetland-involved watersheds.
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2 ha−1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2 ha−1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2 ha−1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.