A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturally without any a priori subjective criterion selection as in the intermittence test for the original EMD algorithm. This new approach utilizes the full advantage of the statistical characteristics of white noise to perturb the signal in its true solution neighborhood, and to cancel itself out after serving its purpose; therefore, it represents a substantial improvement over the original EMD and is a truly noise-assisted data analysis (NADA) method.
[1] Data analysis has been one of the core activities in scientific research, but limited by the availability of analysis methods in the past, data analysis was often relegated to data processing. To accommodate the variety of data generated by nonlinear and nonstationary processes in nature, the analysis method would have to be adaptive. Hilbert-Huang transform, consisting of empirical mode decomposition and Hilbert spectral analysis, is a newly developed adaptive data analysis method, which has been used extensively in geophysical research. In this review, we will briefly introduce the method, list some recent developments, demonstrate the usefulness of the method, summarize some applications in various geophysical research areas, and finally, discuss the outstanding open problems. We hope this review will serve as an introduction of the method for those new to the concepts, as well as a summary of the present frontiers of its applications for experienced research scientists.
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi-logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy-density function is chi-squared distributed. Furthermore, we derive the energy-density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.
Determining trend and implementing detrending operations are important steps in data analysis. Yet there is no precise definition of ''trend'' nor any logical algorithm for extracting it. As a result, various ad hoc extrinsic methods have been used to determine trend and to facilitate a detrending operation. In this article, a simple and logical definition of trend is given for any nonlinear and nonstationary time series as an intrinsically determined monotonic function within a certain temporal span (most often that of the data span), or a function in which there can be at most one extremum within that temporal span. Being intrinsic, the method to derive the trend has to be adaptive. This definition of trend also presumes the existence of a natural time scale. All these requirements suggest the Empirical Mode Decomposition (EMD) method as the logical choice of algorithm for extracting various trends from a data set. Once the trend is determined, the corresponding detrending operation can be implemented. With this definition of trend, the variability of the data on various time scales also can be derived naturally. Climate data are used to illustrate the determination of the intrinsic trend and natural variability.Empirical Mode Decomposition ͉ global warming ͉ intrinsic mode function ͉ intrinsic trend ͉ trend time scale T he terms ''trend'' and ''detrending'' frequently are encountered in data analysis. In many applications, such as climatic data analyses, the trend is one of the most critical quantities sought. In other applications, such as in computing the correlation function and in spectral analysis, it is necessary to remove the trend from the data, a procedure known as detrending, lest the result might be overwhelmed by the nonzero mean and the trend terms; therefore, detrending often is a necessary step before meaningful spectral results can be obtained. As a result, identifying the trend and detrending the data are both of great interest and importance in data analysis.Because the concept of a trend in a data set seems clearly self-evident, most data analysts take it for granted and only few bother to examine the essence of it or to define it rigorously for the purpose of data analysis. For example, in statistics and in numerous scientific analyses, the trend often is taken as the tendency over the whole data domain that presumably will continue into the future when new observations become available. In other cases, the trend can be the residue of data after removing the components of the data with frequency higher than a threshold frequency (1). In a casual Internet search, for example, there are presently more than 12 million items related to trend and detrending. However, a rigorous and satisfactory definition of either the trend of nonlinear nonstationary data or the corresponding detrending operation still is lacking, which leads to the awkward reality that the determination of trend and detrending often are ad hoc operations. Because many of the difficulties concerning trend stem from the lack of...
Instantaneous frequency (IF) is necessary for understanding the detailed mechanisms for nonlinear and nonstationary processes. Historically, IF was computed from analytic signal (AS) through the Hilbert transform. This paper offers an overview of the difficulties involved in using AS, and two new methods to overcome the difficulties for computing IF. The first approach is to compute the quadrature (defined here as a simple 90° shift of phase angle) directly. The second approach is designated as the normalized Hilbert transform (NHT), which consists of applying the Hilbert transform to the empirically determined FM signals. Additionally, we have also introduced alternative methods to compute local frequency, the generalized zero-crossing (GZC), and the teager energy operator (TEO) methods. Through careful comparisons, we found that the NHT and direct quadrature gave the best overall performance. While the TEO method is the most localized, it is limited to data from linear processes, the GZC method is the most robust and accurate although limited to the mean frequency over a quarter wavelength of temporal resolution. With these results, we believe most of the problems associated with the IF determination are resolved, and a true time–frequency analysis is thus taking another step toward maturity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.