Highlights d iPSC and microfluidic technologies were combined to generate a human BBB-Chip d Flow-induced shear and co-cultures enhance barrier performance d The BBB-Chip exhibits physiologically relevant TEER and can predict CNS penetrance d Personalized BBB-Chips can detect interindividual variability in BBB performance
Efforts were made to synthesize LiFePO 4 /C composites showing good rate capability and high energy density while attempting to minimize the amount of carbon in the composite. First, three carbon-coated samples, one coated with carbon after the synthesis of pure LiFePO 4 , one synthesized with sugar added before the heating steps, and one synthesized with sugar added before heating and subsequently coated with carbon, were studied. The resulting carbon contents for these samples are 2.7, 3.5, and 6.2 wt %, respectively. Electrochemical tests showed that the latter two samples had comparable rate capabilities to the LiFePO 4 /C composite ͑15 wt % carbon͒ recently reported by Huang et al. We believe the synthesis of LiFePO 4 with sugar added before heating is the best method because it gives particles having uniform small size that are covered by carbon. Further studies of samples made by this method show that a very small percentage of carbon, even less than 1 wt %, causes a significant increase in rate capability, but unfortunately, a dramatic decrease in tap density. To make LiFePO 4 /C composites having good rate capability, high energy density, and high tap density, the carbon content and method for coating carbon onto the LiFePO 4 particles must be given careful attention. However, based on the studies reported here, we are not certain that all desired parameters can be simultaneously achieved, and this may limit the usefulness of LiFePO 4 in some practical applications.
Although substantial progress has been made in cancer biology and treatment, clinical outcomes of bladder carcinoma (BC) patients are still not satisfactory. The tumor microenvironment (TME) is a potential target. Here, by single-cell RNA sequencing on 8 BC tumor samples and 3 para tumor samples, we identify 19 different cell types in the BC microenvironment, indicating high intra-tumoral heterogeneity. We find that tumor cells down regulated MHC-II molecules, suggesting that the downregulated immunogenicity of cancer cells may contribute to the formation of an immunosuppressive microenvironment. We also find that monocytes undergo M2 polarization in the tumor region and differentiate. Furthermore, the LAMP3 + DC subgroup may be able to recruit regulatory T cells, potentially taking part in the formation of an immunosuppressive TME. Through correlation analysis using public datasets containing over 3000 BC samples, we identify a role for inflammatory cancer-associated fibroblasts (iCAFs) in tumor progression, which is significantly related to poor prognosis. Additionally, we characterize a regulatory network depending on iCAFs. These results could help elucidate the protumor mechanisms of iCAFs. Our results provide deep insight into cancer immunology and provide an essential resource for drug discovery in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.