In this study, we investigate the influence of molecular geometry of the donor polymers and the perylene diimide dimers (di‐PDIs) on the bulk heterojunction (BHJ) morphology in the nonfullerene polymer solar cells (PSCs). The results reveal that the pseudo 2D conjugated poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PTB7‐Th) has better miscibility with both bay‐linked di‐PDI (B‐di‐PDI) and hydrazine‐linked di‐PDI (H‐di‐PDI) compared to its 1D analog, poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7), to facilitate more efficient exciton dissociation in the BHJ films. However, the face‐on oriented π–π stacking of PTB7‐Th is severely disrupted by the B‐di‐PDI due to its more flexible structure. On the contrary, the face‐on oriented π–π stacking is only slightly disrupted by the H‐di‐PDI, which has a more rigid structure to provide suitable percolation pathways for charge transport. As a result, a very high power conversion efficiency (PCE) of 6.41% is achieved in the PTB7‐Th:H‐di‐PDI derived device. This study shows that it is critical to pair suitable polymer donor and di‐PDI‐based acceptor to obtain proper BHJ morphology for achieving high PCE in the nonfullerene PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.