One of the biggest challenges we will face over the next few decades is finding a way to power the future while maintaining strong socioeconomic growth and a clean environment. A transition from the use of fossil fuels to renewable energy sources is expected. Cellulose, the most abundant natural biopolymer on earth, is a unique, sustainable, functional material with exciting properties: it is low‐cost and has hierarchical fibrous structures, a high surface area, thermal stability, hydrophilicity, biocompatibility, and mechanical flexibility, which makes it ideal for use in sustainable, flexible energy storage devices. This review focuses on energy storage applications involving different forms of cellulose (i.e., cellulose microfibers, nanocellulose fibers, and cellulose nanocrystals) in supercapacitors, with particular emphasis on new trends and performance considerations relevant to these fields. Recent advances and approaches to obtaining high capacity devices are evaluated and the limitations of cellulose‐based systems are discussed. For the first time, a combination of device‐specific factors such as electrode structures, mass loadings, areal capacities, and volumetric properties are taken into account, so as to evaluate and compare the energy storage performance and to better assess the merits of cellulose‐based materials with respect to real applications.
We demonstrate that surface modified nanocellulose fibers (NCFs) can be used as substrates to synthesize supercapacitor electrodes with the highest full electrode-normalized gravimetric (127 F g(-1)) and volumetric (122 F cm(-3)) capacitances at high current densities (300 mA cm(-2) ≈ 33 A g(-1)) until date reported for conducting polymer-based electrodes with active mass loadings as high as 9 mg cm(-2). By introducing quaternary amine groups on the surface of NCFs prior to polypyrrole (PPy) polymerization, the macropore volume of the formed PPy-NCF composites can be minimized while maintaining the volume of the micro- and mesopores at the same level as when unmodified or carboxylate groups functionalized NCFs are employed as polymerization substrates. Symmetric, aqueous electrolyte-based, devices comprising these porosity-optimized electrodes exhibit device-specific volumetric energy and power densities of 3.1 mWh cm(-3) and 3 W cm(-3) respectively; which are among the highest values reported for conducting polymer electrodes in aqueous electrolytes. The functionality of the devices is verified by powering a red light-emitting diode with the device in different mechanically challenging states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.