This paper is the first public report that Streptomyces flavogriseus can produce both actinomycin D and holomycin. The actinomycete strain NJ-4 isolated from the soil of Nanjing Agricultural University was identified as S. flavogriseus. This S. flavogriseus strain was found for the first time to produce two antimicrobial compounds that were identified as actinomycin D and holomycin. GS medium, CS medium and GSS medium were used for the production experiments. All three media supported the production of actinomycin D, while holomycin was detected only in GS medium and was undetectable by HPLC in the CS and GSS media. The antimicrobial activity against B. pumilus, S. aureus, Escherichia coli, F. moniliforme, F. graminearum and A. niger was tested using the agar well diffusion method. Actinomycin D exhibited strong antagonistic activities against all the indicator strains. Holomycin exhibited strong antagonistic activities against B. pumilus, S. aureus and E. coli and had antifungal activity against F. moniliforme and F. graminearum but had no antifungal activity against A. niger. The cell viability was determined using an MTT assay. Holomycin exhibited cytotoxic activity against A549 lung cancer cells, BGC823 gastric cancer cells and HepG2 hepatocellular carcinoma cells. The yield of actinomycin D from S. flavogriseus NJ-4 was 960 mg/l. S. flavogriseus NJ-4 exhibits a distinct capability and has the industrial potential to produce considerable yields of actinomycin D under unoptimized conditions.
Xylanase inhibitor proteins (XIPs) were regarded to inhibit the activity of xylanases during baking and gluten-starch separation processes. To avoid the inhibition to xylanases, it is necessary to define the conditions under which the inhibition takes place. In this study, we cloned the XIP gene from 2 different variety of Triticum aestivum, that is, Zhengmai 9023 and Zhengmai 366, and investigated the properties of XIP protein expressed by Pichia pastoris. The results showed that the 2 XIP genes (xip-9023 and xip-366) were highly homologous with only 3 nucleotide differences. XIP-9023 showed the optimal inhibition pH and temperature were 7 °C and 40 °C, respectively. Inhibition of xylanase by XIP-9023 reached the maximum in 40 min. At 50% inhibition of xylanase, the molar ratio of inhibitor: xylanase was 26:1. XIP-9023 was active to various fungal xylanases tested as well as to a bacterial xylanase produced by Paenibacillus sp. isolated from cow rumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.