MgH2 has become a hot spot in the research of hydrogen storage materials, due to its high theoretical hydrogen storage capacity. However, the poor kinetics and thermodynamic properties of hydrogen absorption and desorption seriously hinder the development of this material. Ti-based materials can lead to good effects in terms of reducing the temperature of MgH2 in hydrogen absorption and desorption. MXene is a novel two-dimensional transition metal carbide or carbonitride similar in structure to graphene. Ti3C2 is one of the earliest and most widely used MXenes. Single-layer Ti3C2 can only exist in solution; in comparison, multilayer Ti3C2 (ML-Ti3C2) also exists as a solid powder. Thus, ML-Ti3C2 can be easily composited with MgH2. The MgH2+ML-Ti3C2 composite hydrogen storage system was successfully synthesized by ball milling. The experimental results show that the initial desorption temperature of MgH2-6 wt.% ML-Ti3C2 is reduced to 142 °C with a capacity of 6.56 wt.%. The Ea of hydrogen desorption in the MgH2-6 wt.% ML-Ti3C2 hydrogen storage system is approximately 99 kJ/mol, which is 35.3% lower than that of pristine MgH2. The enhancement of kinetics in hydrogen absorption and desorption by ML-Ti3C2 can be attributed to two synergistic effects: one is that Ti facilitates the easier dissociation or recombination of hydrogen molecules, while the other is that electron transfer generated by multivalent Ti promotes the easier conversion of hydrogen. These findings help to guide the hydrogen storage properties of metal hydrides doped with MXene.
Painting a V-shaped surface, which is widely found in various facilities and equipment, often results in poor coating quality, which may be caused by an insufficient understanding of film-forming characteristics and mechanism. In this study, computational fluid dynamic (CFD) simulations were carried out for in-depth research on the film-forming characteristics and mechanism of painting V-shaped surfaces. The mathematical model of film formation was established with the Euler–Euler method, and the unstructured grids and adaptive-mesh refinement were adopted to discretize the computational domain. By solving the model, the coating thickness distribution law and flow-field characteristics of spraying a V-shaped surface were obtained. When painting a V-shaped surface with an angle less than 180°, the coating thickness distribution appeared as two peaks, instead of the single peak that appeared when painting a flat wall. As the V-shaped angle decreased, the coating thickness became thinner. The peak position gradually shifted to both sides, and the thickness distribution became wider. Analysis of the spray flow-field characteristics revealed the thickness distribution mechanism, by whichthe geometric characteristics of the V-shaped surface changed the near-wall distribution of the flow field. When the V-shaped angle decreased, the pressure peak at the center of the V-shaped surface and the eccentric pressure peaks that formed on both sides increased. The near-wall paint fluid was confined between the central pressure peak and the off-center pressure peak, resulting in paint droplets depositing between the pressure peaks and double-peak distribution of the coating thickness forming on the V-shaped surface. The spraying experiments verified the correctness of the numerical simulations, film-forming characteristics, and corresponding mechanism, which are of great significance for efficient and high-quality spraying on V-shaped surfaces.
Based on the computational fluid dynamics (CFD) theory, this paper proposes a film formation model and a numerical simulation method that can be used in thickness prediction of airless spraying robots. The spraying flow field and the film formation process in the airless spraying process were simulated by the Eulerian–Eulerian approach, and the airless spraying film formation model including the paint expansion model and the wall hitting model was established. To verify the correctness of the model, numerical simulations of static spraying and dynamic spraying were carried out on the plane and arc surfaces. The simulation results showed that the width of the spraying flow field on the far wall increased linearly with the longitudinal distance in the major-axis direction. The busbar spraying on the outer surface of the arc surface showed the similar characteristics to the plane in the major-axis direction. Besides, the annular spraying was similar to the plane spraying in the minor-axis direction, but the inner surface spraying was completely opposite. When spraying the outer surface, the film thickness increased with the increase of the inner diameter but was smaller than that of the plane spraying, while the inner surface spraying was completely opposite. In the spraying experiment, the plane dynamic spraying and the arc plane inner and outer surface translation spraying were selected for verification. The experimental results were in good agreement with the simulation results, indicating that the film formation model of airless spraying established in this paper is basically correct. As a result, this model can be used for thickness prediction of spraying robots.
The modeling of the paint atomization process is a barrier in computational fluid dynamics numerical simulation for the whole process of air spraying, and seriously restricts robot intelligent spray gun trajectory planning and the improvement of coating quality. Consequently, a multi-scale paint atomization model based on the hybrid Euler–Lagrange method was established in this paper, which included a large liquid micelle motion model, a particle motion model, and a turbulence flow model. The Euler method was adopted to capture the gas–liquid interface in the atomization flow field to describe the deformation and motion of large liquid micelles. The identification and transformation mechanisms of large liquid micelles and small particles were constructed by the particle motion model, and the motion of small droplets generated by paint atomization was tracked by the Lagrange method. The turbulence motion of the fluid in the process of paint atomization was described by a two-equation turbulence model. The model calculation method consisting of a finite-volume model, an adaptive hexcore mesh technique and a pressure-based coupled algorithm was established. The multi-scale atomization model was solved and model validation was carried out, which included mesh independence verification and model reliability analysis. The numerical simulation results predicted the atomization flow field parameters, paint atomization shapes, and the changing process from paint to liquid droplets, which was consistent with the experimental data. As a result, the established multi-scale atomization model in this paper is reliable for studying the paint atomization process of air spraying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.