Photodynamic therapy (PDT) is highly effective in treating tumors located near body surface, offering strong tumor suppression and low damage to normal tissue nearby. PDT is also effective for treating a number of other conditions. PDT not only provide a precise and selective method for the treatment of various diseases by itself, it can also be used in combination with other traditional therapies. Because PDT uses light as the unique targeting mechanism, it has simpler and more direct targeting capability than traditional therapies. The core material of a PDT system is the photosensitizer which converts light energy to therapeutic factors/substances. Different photosensitizers have their distinct characteristics, leading to different advantages and disadvantages. These could be enhanced or compensated by using proper PDT system. Therefore, the selected type of photosensitizer would heavily influence the overall design of a PDT system. In this article, we evaluated major types of inorganic and organic PDT photosensitizers, and discussed future research directions in the field.
Tissue adhesions could occur following surgeries, and severe tissue adhesions can lead to serious complications. Medical hydrogels could be applied at surgical sites as a physical barrier to prevent tissue adhesion. For practical reasons, spreadable, degradable, and self-healable gels are highly demanded. To meet these requirements, we applied carboxymethyl chitosan (CMCS) to poloxamer-based hydrogels to generate low Poloxamer 338 (P 338 ) content gels displaying low viscosity at refrigerator temperature and improved mechanical strength at body temperature. Heparin, an effective adhesion inhibitor, was also added to construct P 338 /CMCS-heparin composite hydrogel (PCHgel). PCHgel presents as a flowable liquid below 20 °C and could rapidly transform into gel when spread on the surface of damaged tissue due to temperature change. The introduction of CMCS enabled hydrogels to form a stable self-healable barrier at injured positions and slowly release heparin during the wound healing period before being degraded after ∼14 days. Ultimately, PCHgel significantly reduced tissue adhesion in model rats and displayed higher efficiency than P 338 /CMCS gel without heparin. Its adhesion suppression mechanism was verified, and it also displayed good biosafety. Therefore, PCHgel showed good clinical transformation potential with high efficacy, good safety, and ease of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.