The aggregation-induced emission (AIE) behaviors of carborane-based hybrid emitters have been extensively reported, while their combinations with the thermally activated delayed fluorescence (TADF) are still scarce. We designed and synthesized three Janus carboranes (the chemical structures resemble the double-faced god, Janus) Cb-1/2/3 with different carbazole moieties. All of the Janus carboranes exhibited quenched emission in solution with ΦPL (quantum efficiency of photoluminescence (PL)) lower than 0.01. The PL performance was improved by proceeding to the aggregates in THF/water (ΦPL 0.17–0.35) and further improved in the crystals or solid with ΦPL up to 0.99 for Cb-1, 0.85 for Cb-2, and 0.61 for Cb-3, which agreed with the AIE enhancement. Although the PL of solid Cb-1/2/3 showed non-TADF properties with lifetimes only at several nanoseconds, the crystallographic studies have shown a root cause of π···π stacking that quenched the TADF, and the theoretical calculations forecasted small singlet–triplet energy gaps (ΔE S–T) therein. According to these findings, TADF was recovered in Cb-1/2/3 by doping into 1,3-bis(carbazol-9-yl)benzene (mCP). The 10 wt % doped films of Cb-1/2/3 have achieved a trade-off of ΦPL (0.84 in Cb-3 and 0.83 in Cb-1) and delayed lifetime (up to 8 μs). The doped devices of organic light-emitting diodes incorporating Cb-1/2/3 achieved the highest external quantum efficiency at 10.1% and the maximized luminance of 5920 cd/m2 at a driving voltage of 8 V.
Photoluminescence (PL) sensing of volatile organic compounds (VOCs) represents a convenient and economic detection method toward air pollutants. However, tetraphenylethylene (TPE)-based and recent carborane (Cb)-based sensors retained multiple sites that are responsive to VOC stimulation, making quantitative PL sensing rather challenging. Rendering the simplified and tunable flexibility in the PL sensors is key to achieve the quantitative target. In this work, we proposed a dimeric model of Cb-based emitters to deal with flexibility. Three emissive dibenzothiophene (DBT)-alkynylated carboranes (Cb-1/2/3) were designed and synthesized. Among them, Cb-3 contributed green and green−yellow emission in the crystals, as well as yellow and orange emission in the VOC-incorporated films, together unfolding its vapochromic properties. Crystallographic studies revealed that Cb-3 molecules were invariably dimerized in an interlocked fashion and the redshift in PL was caused by the successive through-space conjugation of DBT moieties. Theoretical calculations verified the thermodynamics stability of Cb-3 dimers and suggested that DBT could individually rotate different angles under the simulation of VOCs. Based on the above findings, we introduced DBT-alkynylated carboranes to detect the VOCs and established linear relationships between the photon energy at the PL maxima and the concentrations of benzene and tetrahydrofuran (THF) vapors. Aside from the successful implementation of quantitative vapochromic sensing, the fast response (6 s) and recovery (3∼5 s), as well as the good reusability, were also evidenced in the sensing of THF vapors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.