A visual tracing model based on Risley prisms is proposed in this paper. Combined with the boresight adjusting technology and the visual detection technology, a new visual system is established. Placing Risley prisms in front of the camera, the field of view of the camera can be dynamically adjusted so that the imageable area of this camera is expanded greatly. Two real-time visual tracing strategies for dynamic targets are proposed, which effectively avoid the problems of target loss and tracking instability. The deviations between the reference trajectory generated by the manipulator and the actual trajectory detected by our visual system are measured. Experimental results show that the deviations are less than 1.5% in the 250 mm motion space of the manipulator. It is verified that the visual system can be used to guide robots with high precision, which provides a potential method for robot navigation.
Fast imaging tracking technology exhibits attractive application prospects in the emerging fields of target tracking and recognition. Smart and compact tracking model with fast and flexible tracking strategy can play a decisive role in improving system performance. In this paper, an effective imaging tracking model from a target to a rotation Risley prism pair embedded with a camera is derived by the beam vector propagation method. A boresight adjustment strategy using the inverse ray tracing and iterative refinement method is established to accomplish the function of fast locating a target. The influence of system parameters on boresight adjustment accuracy and even the dynamic characteristics of the tracking system are investigated to reveal the coupling mechanisms between prism rotation and imaging feedback. The root-mean-square tracking error is below 4.5 pixels by just once adjustment in the static target experiment, while the error in the dynamic experiment is below 8.5 pixels for a target moving at the speed of 50 mm/s, which validates the feasibility of the proposed method for fast imaging tracking applications.
The laser processing method was applied to wood processing, and the water-jet-guided laser processing was adopted to design a numerical control nanosecond water-jet-guided laser processing test bench, which will provide a new theory and method for laser-processing wood. The numerical control nanosecond water-jet-guided laser processing test bench was built. Pinus sylvestris was used as the test subject. Laser energy, cutting speed, and defocus amount were used as the experimental factors. The aspect ratio was used as a response indicator. A three-factor, three-level Box-Behnken design was studied. A regression model of the three factors and aspect ratio was established. The test results showed that laser energy and cutting speed were the significant effects (p < 0.001) and that defocus amount was the notable effect (p < 0.05). The interaction of laser energy × cutting speed and laser energy × defocus amount had a significant effect on the aspect ratio. The optimal processing parameters were as follows: laser energy of 195.24 mJ, cutting speed of 1.03 mm/s, and defocus amount of -0.69 mm. The authors compared the surface of nanosecond water-jet-guided laser processing with the surface of laser processing. The former had little slag, and the cutting processing was stable. Therefore, nanosecond water-jet-guided laser processing showed better processing quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.