Background. Ageing is associated with increased incidence of peri-implantitis but the roles of ageing-associated biological mechanisms in the occurrence of peri-implantitis are not known. This study is aimed at performing integrative bioinformatic analysis of publically available datasets to uncover molecular mechanisms related to ageing and peri-implantitis. Methods. Gene expression datasets related to ageing and peri-implantitis (PI) were sought, and differentially expressed genes (DEGs) were analysed. Ageing-related genes were also identified from the “Aging Atlas” database. Using intersection analysis, an age-related-PI gene set was identified. Functional enrichment analysis for enriched GO biological process and KEGG pathways, protein-protein interaction (PPI) network analysis, correlation analysis, and immune cell infiltration analysis to determine high-abundance immune cells were performed. Least absolute shrinkage and selection operator (LASSO) logistic regression identified key age-related-PI genes. Transcription factor-gene and drug-gene interactions and enriched KEGG pathways for the key age-related-PI genes were determined. Results. A total of 52 genes were identified as age-related-PI genes and found enriched in several inflammation-associated processes including myeloid leukocyte activation, acute inflammatory response, mononuclear cell differentiation, B cell activation, NF-kappa B signalling, IL-17 signalling, and TNF signalling. LYN, CDKN2A, MAPT, BTK, and PRKCB were hub genes in the PPI network. Immune cell infiltration analysis showed activated dendritic cells, central memory CD4 T cells, immature dendritic cells, and plasmacytoid dendritic cells were highly abundant in PI and ageing. 7 key age-related PI genes including ALOX5AP, EAF2, FAM46C, GZMK, MAPT, RGS1, and SOSTDC1 were identified using LASSO with high predictive values and found to be enriched in multiple neurodegeneration-associated pathways, MAPK signalling, and Fc epsilon RI signalling. MAPT and ALOX5AP were associated with multiple drugs and transcription factors and interacted with other age-related genes to regulate multiple biological pathways. Conclusion. A suite of bioinformatics analysis identified a 7-signature gene set highly relevant to cooccurrence of ageing and peri-implantitis and highlighted the role of neurodegeneration, autoimmune, and inflammation related pathways. MAPT and ALOX5AP were identified as key candidate target genes for clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.