Background: Electrocardiogram (ECG) is widely used to screen cardiac diseases. To date, no large population study has provided estimates of the prevalences of ECG findings in China. We aim to investigate the prevalences and associated factors of ECG abnormalities in a general population of Chinese adults. Methods: ECG data were obtained from 34,965 participants in the 2007-2008 China National Diabetes and Metabolic Disorders Study. ECG abnormalities were classified according to the Minnesota coding (MC) criteria. Prevalences of variant ECG abnormalities were calculated. The associations between ECG abnormalities and gender, age and other risk factors for cardiovascular diseases (CVD) were analyzed by multivariate logistic regression test. Results: The prevalences of major arrhythmias were 1.70%, 2.37% and 1.04% in the whole population, men and women, respectively. Atrial fibrillation/flutter was found in 0.35% of men and 0.20% of women. ST depression and T abnormalities accounted for 10.96%, 7.54% and 14.32% in the whole population, men and women, respectively. Independent of gender and other CVD risk factors, older age significantly increased the odds of having atrial fibrillation/flutter, complete left bundle branch block, complete right bundle branch block, sinus tachycardia, atrial/junctional/ventricular premature beats, ST depression and T abnormalities, tall R wave left, left/right atrial hypertrophy, left axis deviation and low voltage. Hypertension, overweight, obesity and hypercholesterolemia all independently increased the odds of having ST depression and T abnormalities. History of cardiovascular/cerebrovascular diseases was positively associated with major arrhythmias, ST depression and T abnormalities and tall R wave left. Conclusions: This study provides estimates of the prevalences of ECG findings in a large population of Chinese adults. Gender, age, CVD risk factors and history of cardiovascular/cerebrovascular diseases were significantly associated with ECG abnormalities.
Diabetic nephropathy (DN) is one microvascular complication of diabetes. About 30% of diabetic patients can develop DN, which is closely related to the high incidence and mortality of heart diseases, and then develop end-stage renal diseases. Therefore, early detection and screening of high-risk patients with DN is important. Herein, we explored the differences of serum transcriptomics between DN and non-DN in type II diabetes mellitus (T2DM) patients. We obtained 110 target genes using weighted correlation network analysis. Gene Ontology enrichment analysis indicates these target genes are mainly related to membrane adhesion, alphaamino acid biosynthesis, metabolism, and binding, terminus, inhibitory synapse, clathrinid-sculpted vesicle, kinase activity, hormone binding, receptor activity, and transporter activity. Kyoto Encyclopedia of Genes and Genomes analysis indicates the process of DN in diabetic patients can involve synaptic vesicle cycle, cysteine and methionine metabolism, N-Glycan biosynthesis, osteoclast differentiation, and cAMP signaling pathway. Next, we detected the expression levels of hub genes in a retrospective cohort. Then, we developed a risk score tool included in the prediction model for early DN in T2DM patients. The prediction model was well applied into clinical practice, as confirmed by internal validation and several other methods. A novel DN risk model with relatively high prediction accuracy was established based on clinical characteristics and hub genes of serum detection. The estimated risk score can help clinicians develop individualized intervention programs for DN in T2DM. External validation data are required before individualized intervention measures.
Background: Electrocardiogram (ECG) is widely used to screen cardiac diseases. To date, no large population study has provided estimates of the prevalences of ECG findings in China. We aim to investigate the prevalences and associated factors of ECG abnormalities in a general population of Chinese adults.Methods: ECG data were obtained from 34,965 participants in the 2007-2008 China National Diabetes and Metabolic Disorders Study. ECG abnormalities were classified according to the Minnesota coding (MC) criteria. Prevalences of variant ECG abnormalities were calculated. The associations between ECG abnormalities and gender, age and other risk factors for cardiovascular diseases (CVD) were analyzed by multivariate logistic regression test. Results: The prevalences of major arrhythmias were 1.70%, 2.37% and 1.04% in the whole population, men and women, respectively. Atrial fibrillation/flutter was found in 0.35% of men and 0.20% of women. ST depression and T abnormalities accounted for 10.96%, 7.54% and 14.32% in the whole population, men and women, respectively. Independent of gender and other CVD risk factors, older age significantly increased the odds of having atrial fibrillation/flutter, complete left bundle branch block, complete right bundle branch block, sinus tachycardia, atrial/junctional/ventricular premature beats, ST depression and T abnormalities, tall R wave left, left/right atrial hypertrophy, left axis deviation and low voltage. Hypertension, overweight, obesity and hypercholesterolemia all independently increased the odds of having ST depression and T abnormalities. History of cardiovascular/cerebrovascular diseases was positively associated with major arrhythmias, ST depression and T abnormalities and tall R wave left.Conclusions: This study provides estimates of the prevalences of ECG findings in a large population of Chinese adults. Gender, age, CVD risk factors and history of cardiovascular/cerebrovascular diseases were significantly associated with ECG abnormalities.
Background: Electrocardiogram (ECG) is widely used to screen cardiac diseases. To date, no large population study has provided estimates of the prevalences of ECG findings in China. We aim to investigate the prevalences and risk factors of ECG abnormalities in the general population of Chinese adults.Methods: ECG data were obtained from 34965 participants in the 2007-2008 China National Diabetes and Metabolic Disorders Study. ECG abnormalities were classified according to the Minnesota coding (MC) criteria. Prevalences of variant ECG abnormalities were calculated. The associations between ECG abnormalities and gender, age and other risk factors for cardiovascular diseases (CVD) were analyzed by multivariate logistic regression test.Results: The prevalences of major arrhythmias were 1.70%, 2.37% and 1.04% in the whole population, men and women, respectively. Atrial fibrillation/flutter was found in 0.35% of men and 0.20% of women. ST depression and T abnormalities accounted for 10.96%, 7.54% and 14.32% in the whole population, men and women, respectively. Independent of gender and other CVD risk factors, the older age significantly increased the risk of having atrial fibrillation/flutter, complete left bundle branch block, complete right bundle branch block, sinus tachycardia, atrial/junctional/ventricular premature beats, ST depression and T abnormalities, tall R wave left, left/right atrial hypertrophy, left axis deviation and low voltage. Hypertension, overweight, obesity and hypercholesterolemia all independently increased the odds ratios of having ST depression and T abnormalities. History of cardiovascular/cerebrovascular diseases was positively associated with major arrhythmias, ST depression and T abnormalities and tall R wave left.Conclusions: This study provides estimates of the prevalences of ECG findings in a large population of Chinese adults. Gender, age, CVD risk factors and history of cardiovascular/cerebrovascular diseases had important impact on ECG abnormalities.# Liping Yu and Xiaojun Ye contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.