Trigeminal neuralgia (TN) is a type of severe paroxysmal neuropathic pain commonly triggered by mild mechanical stimulation in the orofacial area. Piezo2, a mechanically gated ion channel that mediates tactile allodynia in neuropathic pain, can be potentiated by a cyclic adenosine monophosphate (cAMP)-dependent signaling pathway that involves the exchange protein directly activated by cAMP 1 (Epac1). To study whether Piezo2-mediated mechanotransduction contributes to peripheral sensitization in a rat model of TN after trigeminal nerve compression injury, the expression of Piezo2 and activation of cAMP signal-related molecules in the trigeminal ganglion (TG) were detected. Changes in purinergic P2 receptors in the TG were also studied by RNA-seq. The expression of Piezo2, cAMP, and Epac1 in the TG of the TN animals increased after chronic compression of the trigeminal nerve root (CCT) for 21 days, but Piezo2 knockdown by shRNA in the TG attenuated orofacial mechanical allodynia. Purinergic P2 receptors P2X4, P2X7, P2Y1, and P2Y2 were significantly up-regulated after CCT injury. In vitro, Piezo2 expression in TG neurons was significantly increased by exogenous adenosine 5'-triphosphate (ATP) and Ca 2+ ionophore ionomycin. ATP pre-treated TG neurons displayed elevated [Ca 2+ ] i and faster increase in responding to blockage of Na + /Ca 2+ exchanger by KB-R7943. Furthermore, mechanical stimulation of cultured TG neurons led to sustained elevation in [Ca 2+ ] i in ATP pre-treated TG neurons, which is much less in naïve TG neurons, or is significantly reduced by Piezo2 inhibitor GsMTx4. These results indicated a pivotal role of Piezo2 in peripheral mechanical allodynia in the rat CCT model. Extracellular ATP, Ca 2+ influx, and the cAMP-to-Epac1 signaling pathway synergistically contribute to the pathogenesis and the persistence of mechanical allodynia.
Microvascular compression of the trigeminal root entry zone (TREZ) is the main cause of most primary trigeminal neuralgia (TN), change of glial plasticity was previously studied in the TREZ of TN rat model induced by chronic compression. To better understand the role of astrocytes and immune cells in the TREZ, different cell markers including glial fibrillary acidic protein (GFAP), complement C3, S100A10, CD45, CD11b, glutamate-aspartate transporter (GLAST), Iba-1 and TMEM119 were used in the TN rat model by immunohistochemistry and flow cytometry. On the post operation day 28, GFAP/C3-positive A1 astrocytes and GFAP/S100A10-positive A2 astrocytes were activated in the TREZ after compression injury, there were no statistical differences in the ratios of A1/A2 astrocytes between the sham and TN groups. There was no significant difference in Iba-1-positive cells between the two groups. The ratios of infiltrating lymphocytes (CD45+CD11b−) (p = 0.0075) and infiltrating macrophages (CD45highCD11b+) (p = 0.0388) were significantly higher than those of the sham group. In conclusion, different subtypes A1/A2 astrocytes in the TREZ were activated after compression injury, infiltrating macrophages and lymphocytes increased, these neuroimmune cells in the TREZ may participate in the pathogenesis of TN rat model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.