Objective. Ageing is one of the risk factors associated with cardiovascular diseases including cardiac arrhythmias and heart failure. Ageing-related cardiac dysfunction involves a complicated pathophysiological progress. Abnormal membrane voltage and Ca2+ dynamics in aged cardiomyocytes contribute to ageing-related arrhythmias. However, its underlying mechanisms have not been well clarified. Methods. Young and old rats or mice were included in this study. Cardiac electrophysiological properties and functions were assessed by ECG, echocardiography, and ex vivo heart voltage and Ca2+ optical mapping. Proteomics, phosphor-proteomics, Western blotting, Masson staining, and ROS measurement were used to investigate the underlying mechanisms. Results. Ageing increased the incidence of cardiac hypertrophy and fibrosis in rats. Moreover, ageing increased the occurrence of ventricular tachycardia or ventricular fibrillation induced by rapid pacing and during isoprenaline (ISO) (1 mg/kg i.p.) challenge in mice in vivo. Optical mapping with dual dyes (membrane voltage ( V m ) dye and intracellular Ca2+ dye) simultaneously recording revealed that ageing increased the action potential duration (APD) and Ca2+ transient duration (CaTD) and slowed the ventricular conduction with the Langendorff-perfused mouse heart. More importantly, ageing increased the ISO-induced (1 μM) changes of APD (ΔAPD80) and CaTD (ΔCaTD50). Ageing also delayed the decay of Ca2+ transient by extending the decay time constant from 30% to 90% ( τ 30 − 90 ). In addition, ageing decreased the V m / C a 2 + latency which represented the coupling of V m / C a 2 + including between the midpoint of AP depolarization and Ca2+ upstroke, peak transmembrane voltage and peak cytosolic calcium, and time to 50% voltage repolarization and extrusion of cytosolic calcium. Optical mapping also revealed that ageing increased the ISO-induced arrhythmia incidence and occurrence of the excitation rotor. Proteomics and phosphor-proteomics assays from rat hearts demonstrated ageing-induced protein and phosphor-protein changes, suggesting that CaMKII was involved in ageing-induced change. Ageing increased the level of ROS and the expression of NOX4, oxidative CaMKII (ox-CaMKII), phosphorated CaMKII (p-CaMKII), and periostin. Conclusion. Ageing accelerates cardiac remodelling and increases the susceptibility to ventricular arrhythmias through NOX4/ROS/CaMKII pathway-mediated abnormal membrane voltage and intracellular Ca2+ handling and V m / C a 2 + coupling.
Biological tissues are naturally three-dimensional (3D) opaque structures, which poses a major challenge for the deep imaging of spatial distribution and localization of specific cell types in organs in biomedical research. Here we present a 3D heart imaging reconstruction approach by combining an improved heart tissue-clearing technique with high-resolution light-sheet fluorescence microscopy (LSFM). We have conducted a three-dimensional and multi-scale volumetric imaging of the ultra-thin planes of murine hearts for up to 2,000 images per heart in x-, y-, and z three directions. High-resolution 3D volume heart models were constructed in real-time by the Zeiss Zen program. By using such an approach, we investigated detailed three-dimensional spatial distributions of two specific cardiomyocyte populations including HCN4 expressing pacemaker cells and Pnmt+ cell-derived cardiomyocytes by using reporter mouse lines Hcn4DreER/tdTomato and PnmtCre/ChR2−tdTomato. HCN4 is distributed throughout right atrial nodal regions (i.e., sinoatrial and atrioventricular nodes) and the superior-inferior vena cava axis, while Pnmt+ cell-derived cardiomyocytes show distinct ventral, left heart, and dorsal side distribution pattern. Our further electrophysiological analysis indicates that Pnmt + cell-derived cardiomyocytes rich left ventricular (LV) base is more susceptible to ventricular arrhythmia under adrenergic stress than left ventricular apex or right ventricle regions. Thus, our 3D heart imaging reconstruction approach provides a new solution for studying the geometrical, topological, and physiological characteristics of specific cell types in organs.
Cardiac conduction system (CCS) morphogenesis is essential for correct heart function yet is incompletely understood. Here we established the transcriptional landscape of cell types populating the developing heart by integrating single-cell RNA sequencing and spatial enhanced resolution omics-sequencing (Stereo-seq). Stereo-seq provided a spatiotemporal transcriptomic cell fate map of the murine heart with a panoramic field of view and in situ cellular resolution of the CCS. This led to the identification of a previously unrecognized cardiomyocyte population expressing dopamine beta-hydroxylase (Dbh+-CMs), which is closely associated with the CCS in transcriptomic analyses. To confirm this finding, genetic fate mapping by using DbhCre/Rosa26-tdTomato reporter mouse line was performed with Stereo-seq, RNAscope, and immunohistology. We revealed that Dbh+-derived CMs first emerged in the sinus venosus at E12.5, then populated the atrial and ventricular CCS components at E14.5, with increasing abundance towards perinatal stages. Further tracing by using DbhCFP reporter and DbhCreERT/Rosa26-tdTomato inducible reporter, we confirmed that Dbh+-CMs are mostly abundant in the AVN and ventricular CCS and this persists in the adult heart. By using DbhCre/Rosa26-tdTomato/Cx40-eGFP compound reporter line, we validated a clear co-localization of tdTomato and eGFP signals in both left and right ventricular Purkinje fibre networks. Finally, electrophysiological optogenetic study using cell-type specific Channelrhodopsin2 (ChR2) expression further elucidated that Dbh+-derived CMs form a functional part of the ventricular CCS and display similar photostimulation-induced electrophysiological characteristics to Cx40CreERT/ChR2- tdTomato CCS components. Thus, by utilizing advanced transcriptomic, mouse genetic, and optogenetic functional analyses, our study provides new insights into mammalian CCS development and heterogeneity by revealing novel Dbh+-CMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.