This article presents the design and analysis of an air‐filled substrate integrated gap waveguide (ASIGW) resonator. The electromagnetic field of each resonant mode in the resonator is studied by theoretical modeling and EM simulation. Besides, the relationship between the dimensions and Qu is analyzed and the Qu of the resonator can be as high as 2080 at Ku band. Compared with conventional rectangular waveguide resonator and gap waveguide (GW) resonator, the proposed ASIGW resonator can be fabricated more easily. Compared with the substrate integrated waveguide resonator, the ASIGW resonator is more tolerant with dimensional errors and with less degenerate modes. As an example, a fifth‐order band‐pass filter based on the ASIGW resonators is presented to verify the previous conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.