All data used in the manuscript are publicly available (see URLs). GTEx and GERA data can be accessed by application to dbGaP. CommonMind data are available through formal application to NIMH. ADGC phase 2 summary statistics used for validation are available through NIAGADS portal (see URLs) with accession number NG00076.
Transcriptome-wide association analysis is a powerful approach to studying the genetic architecture of complex traits. A key component of this approach is to build a model to impute gene expression levels from genotypes using samples with matched genotypes and gene expression data in a given tissue. However, it is challenging to develop robust and accurate imputation models with a limited sample size for any single tissue. Here, we first introduce a multi-task learning method to jointly impute gene expression in 44 human tissues. Compared with single-tissue methods, our approach achieved an average 39% improvement in imputation accuracy and generated effective imputation models for an average 120% more genes. We then describe a summary statistic-based testing framework that combines multiple single-tissue associations into a powerful metric to quantify the overall gene-trait association. We applied our method, called UTMOST, to multiple genome wide association results and demonstrate its advantages over single-tissue strategies.
Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions. However, accurate estimation of local genetic correlation remains challenging, due to linkage disequilibrium in local genomic regions and sample overlap across studies. We introduce SUPERGNOVA, a statistical framework to estimate local genetic correlations using summary statistics from genome-wide association studies. We demonstrate that SUPERGNOVA outperforms existing methods through simulations and analyses of 30 complex traits. In particular, we show that the positive yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically distinct genetic signatures with bidirectional local genetic correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.