Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention.
As a typical time series, the length of the data sequence is critical to the accuracy of traffic state prediction. In order to fully explore the causality between traffic data, this study established a temporal backtracking and multistep delay model based on recurrent neural networks (RNNs) to learn and extract the long- and short-term dependencies of the traffic state data. With a real traffic data set, the coordinate descent algorithm was employed to search and determine the optimal backtracking length of traffic sequence, and multistep delay predictions were performed to demonstrate the relationship between delay steps and prediction accuracies. Besides, the performances were compared between three variants of RNNs (LSTM, GRU, and BiLSTM) and 6 frequently used models, which are decision tree (DT), support vector machine (SVM), k-nearest neighbour (KNN), random forest (RF), gradient boosting decision tree (GBDT), and stacked autoencoder (SAE). The prediction results of 10 consecutive delay steps suggest that the accuracies of RNNs are far superior to those of other models because of the more powerful and accurate pattern representing ability in time series. It is also proved that RNNs can learn and mine longer time dependencies.
With the progress and development of AI technology and industrial automation technology, AI robot dogs are widely used in engineering practice to replace human beings in high-precision and tedious industrial operations. Bionic robots easily produce control errors due to the influence of spatial disturbance factors in the process of pose determination. It is necessary to calibrate robots accurately to improve the positioning control accuracy of bionic robots. Therefore, a robust control algorithm for bionic robots based on binocular vision navigation is proposed. An optical CCD binocular vision dynamic tracking system is used to measure the end position and pose parameters of a bionic robot, and the kinematics model of the controlled object is established. Taking the degree of freedom parameter of the robot’s rotating joint as the control constraint parameter, a hierarchical subdimensional space motion planning model of the robot is established. The binocular vision tracking method is used to realize the adaptive correction of the position and posture of the bionic robot and achieve robust control. The simulation results show that the fitting error of the robot’s end position and pose parameters is low, and the dynamic tracking performance is good when the method is used for the position positioning of control of the bionic robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.