Abstract-Vehicular ad hoc networks (VANETs) are going to be an important communication infrastructure in our life. Because of high mobility and frequent link disconnection, it becomes quite challenging to establish a robust multi-hop path that helps packet delivery from the source to the destination. This paper presents a multi-hop routing protocol, called MURU, that is able to find robust paths in urban VANETs to achieve high end-to-end packet delivery ratio with low overhead. MURU tries to minimize the probability of path breakage by exploiting mobility information of each vehicle in VANETs. A new metric called expected disconnection degree (EDD) is used to select the most robust path from the source to the destination. MURU is fully distributed and does not incur much overhead, which makes MURU highly scalable for VANETs. The design is sufficiently justified through theoretical analysis and the protocol is evaluated with extensive simulations. Simulation results demonstrate that MURU significantly outperforms existing ad hoc routing protocols in terms of packet delivery ratio, packet delay and control overhead.
Abstract-Vehicular ad hoc networks (VANETs) are going to be an important communication infrastructure in our life. Because of high mobility and frequent link disconnection, it becomes quite challenging to establish a robust multi-hop path that helps packet delivery from the source to the destination. This paper presents a multi-hop routing protocol, called MURU, that is able to find robust paths in urban VANETs to achieve high end-to-end packet delivery ratio with low overhead. MURU tries to minimize the probability of path breakage by exploiting mobility information of each vehicle in VANETs. A new metric called expected disconnection degree (EDD) is used to select the most robust path from the source to the destination. MURU is fully distributed and does not incur much overhead, which makes MURU highly scalable for VANETs. The design is sufficiently justified through theoretical analysis and the protocol is evaluated with extensive simulations. Simulation results demonstrate that MURU significantly outperforms existing ad hoc routing protocols in terms of packet delivery ratio, packet delay and control overhead.
Abstract-Vehicular Ad-hoc Networks (VANETs) are gaining importance for inter-vehicle communication, because they allow for the local communication between vehicles without any infrastructure, configuration effort, and without the expensive cellular networks. As geographic routing can be used to achieve efficient data delivery in VANETs, how to provide location management service in VANETs to facilitate geographic routing remains a fundamental issue. In this paper we will present a novel location management protocol, call MALM, to provide location service to vehicles in VANETs. In MALM, a vehicle calculates the current location of other vehicles by using Kalman filtering based on the historical location information of other nodes. Theoretical analysis is provided to show that MALM is able to achieve high location information availability in the network. We evaluate the performance of MALM via extensive simulations. The simulation results show that MALM works efficiently in VANETs.
Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs.. [Article copies are available for purchase from InfoSci-on-Demand.com]
Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.