To solve the problems of low efficiency and insufficient dynamic response of job shop scheduling in the discrete manufacturing process, a multi-objective flexible job shop scheduling model for digital twin and its solution method are proposed. Firstly, a digital twin scheduling model with physical entity, virtual model and production plan is constructed, and four factors are taken as optimization goals. Then, a hybrid particle swarm optimization method is designed to increase the refined optimization ability, and the obtained Pareto optimal solution set is analyzed by grey relational analysis to obtain a satisfactory solution which coincides with the actual production. Finally, a three-dimensional model which is completely mapped with the real job shop scheduling is built by Plant Simulation software. The scheduling process is simulated and optimized by combining with the production data of an enterprise, which verifies the feasibility and applicability of this method, and will effectively guide the production practice.
Low-carbon process planning is the basis for the implementation of low-carbon manufacturing technology. And it is of profound significance to improve process executability, reduce environmental pollution, decrease manufacturing cost, and improve product quality. In this paper, based on the perceptual data of parts machining process, considering the diversity of process planning schemes and factors affecting the green manufacturing, a multi-level evaluation criteria system is established from the aspects of processing time, manufacturing cost and processing quality, resource utilization, and environmental protection. An integrated evaluation method of low-carbon process planning schemes based on digital twins is constructed. Each index value is normalized by the polarized data processing method, its membership is determined by the fuzzy statistical method, and the combination weight of each index is determined by the hierarchical entropy weight method to realize the organic combination of theoretical analysis, practical experience, evaluation index, and process factors. The comprehensive evaluation of multi-process planning schemes is realized according to the improved fuzzy operation rules, and the best process planning solution is finally determined. Finally, taking the low-carbon process planning of an automobile part as an example, the feasibility and effectiveness of this method are verified by the evaluation of three alternative process planning schemes. The results show that the method adopted in this paper is more in line with the actual production and can provide enterprises with the optimal processing scheme with economic and environmental benefits, which may be helpful for more data-driven manufacturing process optimization in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.