In recent years, PVDF(polyvinylidene fluoride) and its copolymers have attracted great attention in the development of energy-harvesting devices because of their unique properties such as good flexibility, environmental friendliness, high halogen and acid resistance, lightweight and good biocompatibility. Compared to the most commonly used PZT (lead zirconate titanate), the piezoelectricity of PVDF and its copolymer-based materials is relatively low. To further expand the applications of PVDF, there is an urgent need for efficient methods to prepare high piezoelectric polymers or composites. In this work, the crystal phases are introduced first. Then, the preparation methods of PVDF and its copolymer-based materials are summarized, which are mainly focused on four determining factors of piezoelectricity. The mechanisms of piezoelectric β-phase formation and α- to β-phase transformation are introduced. The influence parameters of each process and their interactions are discussed in detail. In the last section, the progress of the preparation methods is summarized. This work will provide useful information to researchers working on piezoelectric composites.
Poly(vinylidene fluoride) (PVDF) and its copolymers exhibit excellent piezoelectric properties and are potential materials for high efficiency energy harvesting devices. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) films are prepared by the solution casting method. The prepared film is then subjected to mechanical stretching and poling process. By adjusting the temperature of the poling process and the elongation ratio of the mechanical stretching process, the relative content of β-phase F(β) increases significantly, leading to high piezoelectric performance. The maximum output voltage of the PVDF-HFP films poled at 40°C reaches 3.67 V, 71% higher than that of the films poled at room temperature. Fourier transform infrared spectroscopy analysis (FTIR), XRD (X-ray diffraction), and differential scanning calorimetry are used to investigate the influences of mechanical stretching and poling process on the crystal structure to discover the enhancement mechanism. This work provides a straightforward and low-cost route to prepare high piezoelectric PVDF-HFP-based materials.
Poly(vinylidene fluoride) (PVDF) and its copolymers have been widely studied due to their excellent piezoelectricity and ferroelectricity. In this study, composite films are prepared by adding Ni nanoparticles (0.00–0.3 wt%) into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP) matrix by solution casting, uniaxial stretching, and high electric field poling. It is found that when the maximum electric field E
max for poling is 130 MV m−1, the calibrated open circuit voltage of the pure PVDF–HFP films reaches 3.12 V, which is much higher than those poled by a lower electric field (70 MV m−1: 1.40 V; 90 MV m−1: 2.29 V). This result shows that the effect of poling on the generated output voltage is decisive. By adding 0.1 wt% Ni nanoparticles, it increases to 3.84 V, 23% higher than that of the pure PVDF–HFP films. To further understand the enhancement mechanism, the effects of Ni nanoparticles on initial crystallization, uniaxial stretching, and high electric field poling are investigated by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.