Skeleton-based human action recognition based on Neural Architecture Search (NAS.) adopts a one-shot NAS strategy. It improves the speed of evaluating candidate models in the search space through weight sharing, which has attracted significant attention. However, directly applying the one-shot NAS method for skeleton recognition requires training a super-net with a large search space that traverses various combinations of model parameters, which often leads to overly large network models and high computational costs. In addition, when training this super-net, the one-shot NAS needs to traverse the entire search space of the complete skeleton recognition task. Furthermore, the traditional method does not consider the optimization of the search strategy. As a result, a significant amount of search time is required to obtain a better skeleton recognition network model. A more efficient weighting model, a NAS skeleton recognition model based on the Single Path One-shot (SNAS-GCN) strategy, is proposed to address the above challenges. First, to reduce the model search space, a simplified four-category search space is introduced to replace the mainstream multi-category search space. Second, to improve the model search efficiency, a single-path one-shot approach is introduced, through which the model randomly samples one architecture at each step of the search training optimization. Finally, an adaptive Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is proposed to obtain a candidate structure of the perfect model automatically. With these three steps, the entire network architecture of the recognition model (and its weights) is fully and equally trained significantly. The search and training costs will be greatly reduced. The search-out model is trained by the NTU-RGB + D and Kinetics datasets to evaluate the performance of the proposed model’s search strategy. The experimental results show that the search time of the proposed method in this paper is 0.3 times longer than that of the state-of-the-art method. Meanwhile, the recognition accuracy is roughly comparable compared to that of the SOTA NAS-GCN method.
Skeleton-based action recognition is a research hotspot in the field of computer vision. Currently, the mainstream method is based on Graph Convolutional Networks (GCNs). Although there are many advantages of GCNs, GCNs mainly rely on graph topologies to draw dependencies between the joints, which are limited in capturing long-distance dependencies. Meanwhile, Transformer-based methods have been applied to skeleton-based action recognition because they effectively capture long-distance dependencies. However, existing Transformer-based methods lose the inherent connection information of human skeleton joints because they do not yet focus on initial graph structure information. This paper aims to improve the accuracy of skeleton-based action recognition. Therefore, a Graph Skeleton Transformer network (GSTN) for action recognition is proposed, which is based on Transformer architecture to extract global features, while using undirected graph information represented by the symmetric matrix to extract local features. Two encodings are utilized in feature processing to improve joints’ semantic and centrality features. In the process of multi-stream fusion strategies, a grid-search-based method is used to assign weights to each input stream to optimize the fusion results. We tested our method using three action recognition datasets: NTU RGB+D 60, NTU RGB+D 120, and NW-UCLA. The experimental results show that our model’s accuracy is comparable to state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.