Background Determination of the endogenous loss of fat (ELF) is used to adjust for the estimation of true total tract digestibility (TTTD) of fat in diets and ingredients. Any factor which affected ELF may further affect the digestibility of fat, including sources and concentrations of fat and fiber in the diet. There are some reports of determining the ELF using regression methods based on different levels of fat intake, while reports on effects of dietary fiber content and different fiber-rich ingredients in pig diets on ELF are very limited. Therefore, the objective of this study was to determine the effects of dietary fiber content and different fiber-rich ingredients on endogenous losses of fat and fatty acids at the end of ileum and throughout the entire intestinal tract in growing pigs. Methods In Exp. 1, the effect of fiber content on endogenous loss of fat was determined using six growing pigs (Duroc × Landrace × Yorkshire; 27.6 ± 2.4 kg), fitted with a T-cannula at the end of ileum. The experimental design was a 6 × 6 complete Latin square design with six periods of feeding and six diets. The six experimental fat-free diets were formulated to include graded levels of neutral detergent fiber (NDF) (0, 40, 80, 120, 160 and 200 g/kg) and soybean hull (SH) was the only fiber source, providing 0, 75, 150, 225, 300 and 375 g/kg, respectively. Chromic oxide was included at 4 g/kg in all diets as an indigestible marker. In Exp. 2, six crossbred growing barrows (27.6 ± 1.6 kg) were used and the experimental design was the same as for Exp. 1. The six fat-free diets were formulated to include six common fiber-rich ingredients and the concentration of NDF was 100 g/kg. The six fiber-rich ingredients were defatted rice bran (DRB), sugar beet pulp (SBP), rice hull (RH), corn germ meal (CGM), SH and wheat bran (WB) and they were fed at represented 250, 270, 145, 250, 170 and 280 g/kg in the diet, respectively. Results In Exp. 1, the endogenous loss of fatty acids profile did not change as dietary NDF increased in growing pigs. The endogenous losses of fat, C16:0, C18:0, C18:1, C18:2, total unsaturated fatty acids (UFA) and total saturated fatty acids (SFA) in growing pigs at the end of ileum and throughout the entire intestinal tract increased linearly as NDF content of diets increased. The endogenous losses of fat, as well as C16:0 and C18:0 throughout the entire intestinal tract also increased quadratically as NDF content of diets increased. The ELF increased from 0.71 to 3.14 g/kg of dry matter intake (DMI) and 0.56 to 8.21 g /kg DMI at the end of ileum and throughout the entire intestinal tract in growing pigs, respectively. The ELF occurred in the hindgut except for the growing pigs fed 0 and 4% NDF in their diets. The endogenous losses of C16:0 and UFA occurred primarily in the upper regions of the gut and the greatest endogenous losses of C18:0 occurred in the hindgut. The endogenous losses of fat, individual SFA and total SFA througho...
The purpose of this study is to explore the potential plasma metabolism biomarkers reflecting the maintenance status of growing pigs. The repeated measurement design was used in this experiment, and six barrows (28.6 ± 0.5 kg BW) were selected and kept in metabolism crates. The feeding level in growing pigs close to ad libitum was 2400 kJ ME/kg BW 0.6 •day −1 during Day 1 to Day 7, while a feeding level of 782 kJ ME/kg BW 0.6 •day −1 was provided as energy requirement for maintenance during Day 8 to Day 14. Plasma samples of each pig were collected from the anterior vena cava on the morning of Day 8 and Day 15. The metabolites of plasma were determined by high-resolution mass spectrometry using a metabolomics approach.Results showed that metabolomics analysis between ad libitum-fed state and maintained status revealed differences in 16 compounds. Identified compounds were enriched in metabolic pathways related to linoleic acid metabolism, tryptophan metabolism, and alanine, aspartate and glutamate metabolism. In conclusion, linoleic acid metabolism, tryptophan metabolism, alanine, aspartate and glutamic acid metabolism pathways played a major regulatory role in the maintenance status of growing pigs. The potential metabolism biomarkers of maintenance in growing pigs were linoleic acid, glutamine and tyrosine.
A diet consumed by pigs provides the nutrients for the production of a large number of metabolites that, after first‐pass metabolism in the liver, circulate systemically where they may exert diverse physiologic influences on pigs. So far, little is known of how feeding elicits changes in metabolic profiles for growing pigs. This study investigated differences in plasma metabolites in growing pigs at several intervals after feeding using the technique of metabolomics. Ten barrows (22.5 ± 0.5 kg BW) were fed a corn‐soybean meal basal diet and were kept in metabolism crates for a period of 11 days. An indwelling catheter was inserted into the jugular vein of each pig before the experimental period. Plasmas before and 1, 4, and 8 hr after feeding were collected at day 11 and differential metabolites were determined using a metabolomics approach. Direct comparison at several intervals after feeding revealed differences in 14 compounds. Identified signatures were enriched in metabolic pathways related to linoleic acid metabolism, arginine and proline metabolism, lysine degradation, glycine, serine and threonine metabolism, and lysine biosynthesis. These results suggest that plasma metabolites of growing pigs after feeding were modulated through changes in linoleic acid metabolism and amino acid metabolism.
Though the energy requirement for maintenance is an important part of net energy system, little is known of the metabolic characteristics of maintenance energy expenditure. This study was investigated the effect of feeding level at metabolizable energy requirement for maintenance (FLM) on plasma metabolites in growing pigs. Ten barrows (22.5 ± 0.5 kg BW) were kept in metabolism crates and catheterized in the precaval vein during adaptation period. Pigs were fed a corn-soybean meal diet at 782 kJ ME/kg BW0.6·d−1 during d 1 to 8 and then were refeeding at 2,400 kJ ME/kg BW0.6·d−1 on d 9. Plasma samples of each pig were collected by catheter on the morning of d 1, 3, 5, 7, 9, and 10, respectively, for metabolomics testing. Results showed that the concentration of plasma urea nitrogen decreased under FLM (p < 0.01) and increased significantly after refeeding (p < 0.01). The concentration of total cholesterol, high-density lipoprotein, low-density lipoprotein, and albumin in plasma were decreased significantly after refeeding (p < 0.01). Eleven identified compounds were up-regulated and six ones were down-regulated under FLM. In conclusion, the energy metabolism of growing pigs was relatively stable after 4 days of feeding at FLM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.