High failure rates have been associated with nonlocking cancellous screws with a typical buttress thread in patients with osteoporotic bone. This study aimed to develop a novel thread design and compare its fixation stability with that of a typical buttress thread. Nonlocking cancellous screws with a novel thread design (proximal flank angle of 120 degrees, a flat crest feature, a tip‐facing undercut feature) and nonlocking cancellous screws with a typical buttress thread were manufactured using stainless steel. Fixation stabilities were evaluated individually by the axial pullout and lateral migration tests, and they were evaluated in pairs together with a dynamic compression plate in an osteoporotic bone substitute (10 PCF polyurethane foam per ASTM F1839) under cyclic craniocaudal and torsional loadings. Pullout strength and lateral migration resistance for the individual screw test and the force, torque, and number of cycles required to achieve specific displacement and torsion for the multi‐screw test were comparatively analyzed between both screw types. A finite element analysis model was constructed to analyze the stress distributions in the bone tissue adjacent to the threads. The biomechanical test revealed the novel undercut thread had superior axial pullout strength, lateral migration resistance, and superior fixation stability when applied to a dynamic compression plate under cyclic craniocaudal loading and torsional loading than those in the typical buttress thread. The finite element analysis simulation revealed that the novel thread can distribute stress more evenly without high‐stress concentration at the adjacent bone tissue when compared to that of a typical buttress thread.
Background The influence of thread profile on the fixation stability of bone screws remains unclear. This study aimed to compare the fixation stability of screws with different thread profiles under several loading conditions. Methods Bone screws that differed in thread profile (buttress, triangle, and square thread) only were made of stainless steel. Their fixation stabilities were evaluated individually by the axial pullout test and lateral migration test, besides, they were also evaluated in pairs together with a dynamic compression plate and a locking plate in polyurethane foam blocks under cyclic craniocaudal and torsional loadings. Results The triangle-threaded and square-threaded screws had the highest pullout forces and lateral migration resistance. When being applied to a dynamic compression plate, higher forces and more cycles were required for both triangle- and square-threaded screws to reach the same displacement under cyclic craniocaudal loading. On the other hand, the triangle-threaded screws required a higher torque and more cycles to reach the same angular displacement under cyclic torsional loading. When being applied to a locking plate, the square-threaded screws needed higher load, torque, and more cycles to reach the same displacement under both cyclic craniocaudal and torsion loadings. Conclusions The triangle-threaded screws had superior pullout strength, while square-threaded screws demonstrated the highest lateral migration resistance. Moreover, dynamic compression plate fixation with triangle- and square-threaded screws achieved more favorable fixation stability under craniocaudal loading, while triangle-threaded screws demonstrated superior fixation stability under torsional loading. Locking plate fixation with a square-threaded screw achieved better fixation stability under both loading types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.