Deep learning based image quality assessment models usually learn to predict image quality from a single dataset, leading the model to overfit specific scenes. To account for this, mixed datasets training can be an effective way to enhance the generalization capability of the model. However, it is nontrivial to combine different image quality assessment datasets, as their quality evaluation criteria, score ranges, view conditions, as well as subjects are usually not shared during the image quality annotation. Instead of aligning the annotations, this paper proposes a monotonic neural network for image quality assessment model learning with different datasets combined. In particular, this model consists of a dataset‐shared quality regressor and several dataset‐specific quality transformers. The quality regressor aims to obtain the perceptual quality of each image of each dataset and the quality transformer maps the perceptual quality to the corresponding annotation monotonically. The experimental results verify the effectiveness of the proposed learning strategy and the code is available at https://github.com/fzp0424/MonotonicIQA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.