We have identified a novel zinc finger-containing transcription factor, called Osterix (Osx), that is specifically expressed in all developing bones. In Osx null mice, no bone formation occurs. In endochondral skeletal elements of Osx null mice, mesenchymal cells, together with osteoclasts and blood vessels, invade the mineralized cartilage matrix. However, the mesenchymal cells do not deposit bone matrix. Similarly, cells in the periosteum and in the condensed mesenchyme of membranous skeletal elements cannot differentiate into osteoblasts. These cells do, however, express Runx2/Cbfa1, another transcription factor required for bone formation. In contrast, Osx is not expressed in Runx2/Cbfa1 null mice. Thus, Osx acts downstream of Runx2/Cbfa1. Because Osx null preosteoblasts express typical chondrocyte marker genes, we propose that Runx2/Cbfa1-expressing preosteoblasts are still bipotential cells.
Chondrogenesis results in the formation of cartilages, initial skeletal elements that can serve as templates for endochondral bone formation. Cartilage formation begins with the condensation of mesenchyme cells followed by their differentiation into chondrocytes. Although much is known about the terminal differentiation products that are expressed by chondrocytes, little is known about the factors that specify the chondrocyte lineage. SOX9 is a high-mobility-group (HMG) domain transcription factor that is expressed in chondrocytes and other tissues. In humans, SOX9 haploinsufficiency results in campomelic dysplasia, a lethal skeletal malformation syndrome, and XY sex reversal. During embryogenesis, Sox9 is expressed in all cartilage primordia and cartilages, coincident with the expression of the collagen alpha1(II) gene (Col2a1) . Sox9 is also expressed in other tissues, including the central nervous and urogenital systems. Sox9 binds to essential sequences in the Col2a1 and collagen alpha2(XI) gene (Col11a2) chondrocyte-specific enhancers and can activate these enhancers in non-chondrocytic cells. Here, Sox9 is identified as a regulator of the chondrocyte lineage. In mouse chimaeras, Sox9-/- cells are excluded from all cartilages but are present as a juxtaposed mesenchyme that does not express the chondrocyte-specific markers Col2a1, Col9a2, Col11a2 and Agc. This exclusion occurred cell autonomously at the condensing mesenchyme stage of chondrogenesis. Moreover, no cartilage developed in teratomas derived from Sox9-/- embryonic stem (ES) cells. Our results identify Sox9 as the first transcription factor that is essential for chondrocyte differentiation and cartilage formation.
Chondrogenesis is a multistep process that is essential for endochondral bone formation. Previous results have indicated a role for -catenin and Wnt signaling in this pathway. Here we show the existence of physical and functional interactions between -catenin and Sox9, a transcription factor that is required in successive steps of chondrogenesis. In vivo, either overexpression of Sox9 or inactivation of -catenin in chondrocytes of mouse embryos produces a similar phenotype of dwarfism with decreased chondrocyte proliferation, delayed hypertrophic chondrocyte differentiation, and endochondral bone formation. Furthermore, either inactivation of Sox9 or stabilization of -catenin in chondrocytes also produces a similar phenotype of severe chondrodysplasia. Sox9 markedly inhibits activation of -catenin-dependent promoters and stimulates degradation of -catenin by the ubiquitination/proteasome pathway. Likewise, Sox9 inhibits -catenin-mediated secondary axis induction in Xenopus embryos. -Catenin physically interacts through its Armadillo repeats with the C-terminal transactivation domain of Sox9. We hypothesize that the inhibitory activity of Sox9 is caused by its ability to compete with Tcf/Lef for binding to -catenin, followed by degradation of -catenin. Our results strongly suggest that chondrogenesis is controlled by interactions between Sox9 and the Wnt/-catenin signaling pathway. Chondrogenesis, an obligatory process in endochondral bone formation, starts with the recruitment of chondrogenic mesenchymal cells into condensations. This is followed by the differentiation of these cells into chondrocytes, which produce cartilage-specific extracellular matrix (ECM) proteins including type II collagen and the proteoglycan aggrecan. Chondrocytes then undergo a unidirectional proliferation to form orderly parallel columns, exit the cell cycle, become prehypertrophic, and then hypertrophic. Sox9, a high-mobility-group (HMGbox) transcription factor, is required at sequential steps in this pathway (Bi et al. 1999(Bi et al. , 2001Akiyama et al. 2002).Both the human disease campomelic dysplasia, which is caused by heterozygous mutations in the Sox9 gene and is due to Sox9 haploinsufficiency, as well as Sox9 heterozygous mutant mice are characterized by a general hypoplasia of endochondral bones (Foster et al. 1994;Wagner et al. 1994). Inactivation of Sox9 in limb buds using the Cre recombinase/loxP recombination system before chondrogenic mesenchymal condensations results in the complete absence of mesenchymal condensations and of subsequent cartilage and bone formation, indicating that Sox9 is needed for an early step in chondrogenesis, that of mesenchymal condensations (Akiyama et al. 2002). A similar conclusion was also reached by analysis of mouse embryo chimeras derived from homozygous Sox9 mutant embryonic stem (ES) cells (Bi et al. 1999). That Sox9 is needed at sequential steps is shown by the severe generalized chondrodysplasia of mouse embryos in which Sox9 is deleted after chondrogenic mesenchymal conde...
L-Sox5 and Sox6 are highly identical Sry-related transcription factors coexpressed in cartilage. Whereas Sox5 and Sox6 single null mice are born with mild skeletal abnormalities, Sox5; Sox6 double null fetuses die with a severe, generalized chondrodysplasia. In these double mutants, chondroblasts poorly differentiate. They express the genes for all essential cartilage extracellular matrix components at low or undetectable levels and initiate proliferation after a long delay. All cartilages are thus extracellular matrix deficient and remain rudimentary. While chondroblasts in the center of cartilages ultimately activate prehypertrophic chondrocyte markers, epiphyseal chondroblasts ectopically activate hypertrophic chondrocyte markers. Thick intramembranous bone collars develop, but the formation of cartilage growth plates and endochondral bones is disrupted. L-Sox5 and Sox6 are thus redundant, potent enhancers of chondroblast functions, thereby essential for endochondral skeleton formation.
The transcription factor Sox9 is expressed in all chondroprogenitors and has an essential role in chondrogenesis. Sox9 is also expressed in other tissues, including central nervous system, neural crest, intestine, pancreas, testis, and endocardial cushions, and plays a crucial role in cell proliferation and differentiation in several of these tissues. To determine the cell fate of Sox9-expressing cells during mouse embryogenesis, we generated mice in which a Cre recombinase gene preceded by an internal ribosome entry site was inserted into the 3 untranslated region of the Sox9 gene (Sox9-Cre knock-in). In the developing skeleton, Sox9 was expressed before Runx2, an early osteoblast marker gene. Cell fate mapping by using Sox9-Cre;ROSA26 reporter (R26R) mice revealed that Sox9-expressing limb bud mesenchymal cells gave rise to both chondrocytes and osteoblasts. Furthermore, a mutant in which the Osterix gene was inactivated in Sox9-expressing cells exhibited a lack of endochondral and intramembranous ossification and a lack of mature osteoblasts comparable with Osterix-null mutants. In addition, Sox9-expressing limb bud mesenchymal cells also contributed to tendon and synovium formation. By using Sox9-Cre;R26R mice, we also were able to systematically follow Sox9-expressing cells from embryonic day 8.0 to 17.0. Our results showed that Sox9-expressing cells contributed to the formation of all cell types of the spinal cord, epithelium of the intestine, pancreas, and mesenchyme of the testis. Thus, our results strongly suggest that all osteo-chondroprogenitor cells, as well as progenitors in a variety of tissues, are derived from Sox9-expressing precursors during mouse embryogenesis.imb skeleton is formed as a cartilage model that undergoes endochondral bone formation. At the initiation of limb development, undifferentiated mesenchymal cells in the lateral plate mesoderm receive proliferation signals from the apical ectodermal ridge. These cells start to aggregate and form mesenchymal condensations, which are the primordia of the limb skeleton, then differentiate into chondrocytes and generate a cartilage skeleton. Cells surrounding the nascent cartilage form the perichondrium and periosteum, specialized structures consisting of thin layers of mesenchymal cells. The cells surrounding the zone of hypertrophic chondrocytes begin to differentiate into osteoblasts and, together with blood vessels and osteoclasts, invade the mineralized cartilage matrix and replace cartilage by bone.Specific transcription factors regulate the differentiation pathways of chondrocytes and osteoblasts. Sox9, a transcription factor with a high-mobility group DNA-binding domain, activates chondrocyte-specific marker genes, such as Col2a1, Col11a2, and Aggrecan (1-3). Sox9 is expressed in all chondroprogenitors and chondrocytes except hypertrophic chondrocytes (4, 5). Campomelic dysplasia, a human disease that is caused by heterozygous mutations in the Sox9 gene, is characterized by a general hypoplasia of endochondral bones (6, 7). We have re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.