Interconnected close-packed nitrogen-doped porous carbon polyhedrons (NCPs) confined in two-dimensional carbon nanosheets (CNSs) have been prepared through a sustainable one-pot pyrolysis of a simple solid mixture of zeolitic imidazolate framework-8 (ZIF-8) crystals and with organic potassium as the precursors. The hierarchically organized framework of the NCP-CNS composites enables NCPs and CNSs to act as well-defined electrolyte reservoirs and mechanical buffers accommodating large volume expansions of NCPs, respectively. Among the unique composite nanostructures, the NCPs with vast micropores provide electric double-layer capacitances, while the CNSs bridge the individual NCPs to form a conductive pathway with a hierarchical porosity. As a result, the NCP-CNS composites with high electrical integrity and structural stability are used as electrode materials for high-performance supercapacitors, which exhibit excellent electrochemical capacitive characteristics in terms of an outstanding capacitance of 300 F g at 1 A g, large energy density of 20.9 W h kg, and great cycling performance of 100% retention after 6000 cycles. This work therefore presents a one-pot and efficient strategy to prepare an ordered arrangement of ZIF-8-derived porous carbons toward new electrode materials in promising energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.