The kelp aquaculture production in China is the largest in the world, and a large amount of kelp residue is produced by kelp processing. Kelp residues contain substantial quantities of crude fibre, protein, and residual alginic acid, and may be used as feedstuff for aquaculture animals. In this study, we used probiotics to ferment kelp residues to improve kelp nutrient content and then fed the fermented kelp to the sea cucumber, Apostichopus japonicus. To study the effect of fermented feed on sea cucumber, its growth performance, digestive enzyme activity, diversity of intestinal microbiota and water quality of the sea cucumber culture water were determined. Growth performance of sea cucumber fed with fermented feed significantly (p < .01) increased when compared with sea cucumber fed with formulated feed. Amylase, cellulose and alginase activities were significantly (p < .01) higher in the fermented feed group when compared with the formulated feed group. The total number and diversity of intestinal microbiota showed a significant increase in sea cucumbers fed with the fermented feed. The water quality of the fermented feed group showed much lower ammonia and nitrite (<0.050 mg/L) levels when compared with the formulated feed group. These results suggest that kelp residues fermented with probiotics enhance the growth, digestive enzyme activities and intestinal microbiota of sea cucumbers and improve the culture water quality. Fermented kelp residues are a new supplementary nutrient source for sea cucumbers and may be applicable to other animal aquacultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.