Phosphine gas (PH3) is one of the most commonly used fumigants for controlling stored-grain pests worldwide. We estimated the discriminating dose for Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) adult insects using a laboratory susceptible strain. This discriminating dose was then used to determine presence or absence of PH3 resistance (resistance frequencies) in 19 field-collected populations of C. ferrugineus from Oklahoma, United States. The discriminating dose was estimated as 56.2 ppm of PH3 over a 20-h exposure period at 25 °C. Discriminating dose bioassay results showed that PH3 resistance was present in all 19 populations of C. ferrugineus tested. However, five populations-Stillwater (Stil), Enid Terminal 1 (ET-1), Enid Terminal 2 (ET-2), Johnson-Enid population (JE), and DK Farm 20 population (DK Farm 20) had ≥90% resistance frequencies. LC99 values estimated by probit analyses of dose-response mortality data for the laboratory susceptible strain (Lab-S), JE, and DK Farm 20 were 7.3, 636.4, and 968.6 ppm, respectively, over a 3-d exposure period. The level of resistance in DK Farm 20, the most resistant population, was 133.5 times that of the susceptible laboratory strain. This study shows that PH3 resistance in C. ferrugineus may be widespread in Oklahoma. Based on this study, there is a need for a wider PH3 resistance survey in grain-growing regions of Oklahoma and United States. Furthermore, results show there is a need to develop PH3 resistance management strategies for C. ferrugineus and other stored-product insect pest species to combat resistance and ensure continued effective future use of PH3.
Total fatty acids in the pea aphid reared at low temperatures increased significantly compared to that at high rearing temperatures. This change is reflected in a large increase of myristic acid, which occurs exclusively in triacylglycerols. When aphids were moved from 25°C to a lower rearing temperature at 10°C, saturated fatty acids accumulated over time, reaching a maximum at 16th day. When aphids were moved to 4°C, a temperature below the developmental threshold, those aphids did not accumulate saturated fatty acids. Similar results were observed when aphids were exposed to sequential decrease in rearing temperature. However, both total fatty acids and myristic acid in the aphids from the treatments of sequential decreasing rearing temperature were significantly higher compared to those in the aphids from the treatments of sudden decreasing rearing temperature. This result, therefore, supports the hypothesis that cold-adapted aphids can survive under threshold temperature for a longer period of time than noncold-adapted aphids. Acetyl-CoA carboxylase activity in the aphids at 25°C was twofold higher than that in the aphids at 10°C, whereas fatty acid synthase activities in the aphids reared at 25 and 10°C are similar. Aphids reared at 10°C showed a threefold reduction in reproduction rates. This reduced production of new nymphs reduces energy demand and would allow for accumulation of energy in the form of triacylglycerols. Therefore, the increased level of saturated fatty acids in aphids reared at low temperature is probably related to lower utilization of fatty acids rather than increased rates of biosynthesis.
Vinegar flies are vectors of pathogens causing fruit rots of grapes, so control of these insects is important for preventing vineyard yield loss. Recent outbreaks of sour rots may be linked to greater challenges controlling vinegar flies, so we investigated the insecticide susceptibility of populations collected from commercial vineyards across Michigan. We first determined the discriminating concentration for phosmet, malathion, methomyl, and zeta-cypermethrin using a laboratory susceptible (Canton-S) strain of D. melanogaster females. The discriminating concentrations were determined as 252.08, 2.58, 0.96, and 1.68 ppm of the four insecticides, respectively. These concentrations were first tested in 2020 against populations from the two major counties for grape production. In 2021, we expanded monitoring to twenty-three populations collected from vineyards across six counties. All populations had significantly lower sensitivity to all four insecticides compared with Canton-S strain, with up to 98.8% lower mortality for phosmet. The LC50, LC90, and LC99 values of the four insecticides for the two populations tested in 2020 were 7–1,157-fold higher than the Canton-S strain. For the twenty-three populations collected in 2021, mortality ranged from 56.3 to 100% when the flies were screened using a 10x concentration of the discriminating concentration of the insecticides, whereas it ranged from 82.4 to 100% when the flies were screened using a 20x concentration. Our results suggest variable levels of resistance to insecticides from multiple chemical classes in D. melanogaster populations in Michigan vineyards, highlighting the need to implement integrated sour rot management approaches that are less dependent on insecticides for control of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.