The aim of this work was to test the effect of treatment with hydrogen sulfide (H2S) on hyperoxia-induced acute lung injury in mice. Mice were exposed to room air or 95 % O2, and treated with NaHS (intraperitoneal injection of 0.1 ml/kg/day of 0.56 mol/l NaHS). Treatment with H2S partly restored the reduced H2S levels in plasma and lungs of mice exposed to hyperoxia. Treatment with H2S attenuated hyperoxia-induced acute lung injury marked by reduced ratio of lung weight to body weight, ratio of lung wet weight to dry weight, and cell numbers and protein content in bronchoalveolar lavage (BAL) and decreased apoptosis. Treatment with H2S markedly prolonged the survival of mice under oxygen exposure. Treatment with H2S abated hyperoxia-induced oxidative stress marked by reduced malondialdehyde and peroxynitrite formation, reduced NADPH oxidase activity, enhanced translocation of nuclear factor E2-related factor (Nrf2) into nucleus and increased activity of HO-1. Treatment with H2S decreased IL-1β, MCP-1, and MIP-2, and increased IL-10 expression in lungs of mice exposed to hyperoxia. Treatment with H2S decreased NFκB activity and iNOS expression in lungs, and reduced NOx content in BAL of mice exposed to hyperoxia. Treatment with H2S reduced lung permeability and suppressed VEGF release and VEGFR2 expression in lungs of mice under oxygen exposure. Treatment with exogenous H2S attenuated hyperoxia-induced acute lung injury through abating oxidative stress, suppressing inflammation, and reducing lung permeability in mice.
Background and objectiveBlast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important.Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action.Study design and methodsA549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins.ResultsA549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC.ConclusionOur research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways:1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis.
In this study, we investigate the anti-cancer activity of caudatin in carcinomic human alveolar basal epithelial cell line A549 and anti-angiogenic activity in human umbilical vein endothelial cells (HUVECs). We show that caudatin impairs the cell viability and induces G(0) /G(1) phase arrest in A549 cells with a dose dependent manner. A549 cells, not HUVECs, dealing with caudatin exhibited typical characteristics of apoptosis, which were accompanied by activation of caspase-3, caspase-9 and Poly(ADP-Ribose) Polymerase (PARP). In addition, caudatin treatment resulted in a decrease of β-catenin and increase of phosphorylation of β-catenin, and inhibited phosphorylation levels of GSK3β (Ser 9) in A549 cells. Conditional medium of A549 cells-induced or growth factors-induced tube formation of HUVECs was markedly inhibited by caudatin treatment, which was associated with the inhibiting VEGF secretion from A549 cells by caudatin. Our findings suggest that caudatin inhibits carcinomic human alveolar basal epithelial cell growth and angiogenesis by targeting GSK3β/β-catenin pathway and suppressing VEGF production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.