Inductive power transfer (IPT) has been widely adopted as an efficient and convenient charging manner for both static and in-motion EVs. In this paper, a new hybrid topology is presented to improve the coupling tolerance under pad misalignment. The double inductor–capacitor–capacitor (LCC-LCC) network and series hybrid network combining the LCC-LCC topology and series-series (SS) topology are connected in parallel to provide better tolerance against self- and mutual inductance changes, particularly with a large Z-axis transmission distance. A double-DD quadrature pad (DD2Q) consists of a Q pad, and double orthogonal DD pads are analyzed in detail, which are employed to decouple the cross-mutual inductance. Moreover, a parametric design method based on the misalignment characteristics of the DD2Q pads is also proposed to maintain relatively constant power output. A 650-W hybrid topology with a fixed operating frequency of 85 kHz was built to verify the system’s feasibility. The size of the DD2Q pads was 280 mm × 280 mm, and the air gap was 100 mm. The results clearly show that the proposed hybrid topology can achieve a fluctuation within 5% in the output current with load varying from 100% full load to 25% light load conditions when the Z-axis transmission distance varies from 80 mm to 150 mm, and the maximum efficiency can reach 91% when the Z-axis transmission distance is 80 mm.
This paper presents a series hybrid wireless charging system with an active adjustable circuitry offering constant current and constant voltage output characteristics. The series hybrid system consists of the inductor–capacitor–capacitor (LCC) and series-series (SS) networks are used for improving charging pad misalignment tolerance. An active switch is employed to provide an adjustable CC and CV output for different battery charging stages. To demonstrate the performance of the proposed method, a 310 W prototype was built. A systematic optimization in the parameter of the proposed topology to achieve relative constant output was analyzed within a certain range of the designed operating region. The experimental results indicate that the output current fluctuation is less than 5% with load variations, and the output voltage fluctuation is less than 5% with load varying from 19 to 70 Ω, as the pick-up pads misaligned within 50% of the pad outer diameter.
High misalignment-insensitive capacity is of great importance for inductive power transfer (IPT) systems. A hybrid topology based on a parameter optimization design method is presented to obtain constant current output regardless of the coupling and load. DDQ coils are employed to protect against system key parameter changes, and a particle swarm optimization (PSO) method has been presented to achieve a nearly constant current output without using complex control schemes. A hybrid IPT system using DDQ coils has been built. The experimental results verify that the current fluctuation is within 5% when the load varies from 5Ω to 10Ω within 50% misalignment of the coupling pads. Moreover, the maximum system DC–DC efficiency is up to 91%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.