Luteolin, a polyphenolic flavone, has been demonstrated to exert anti-tumor activity in various cancer types. Cisplatin drug resistance is a major obstacle in the management of ovarian cancer. In the present study, we investigated the chemo-sensitizing effect of luteolin in both cisplatin-resistant ovarian cancer cell line and a mice xenotransplant model. In vitro, CCK-8 assay showed that luteolin inhibited cell proliferation in a dose-dependent manner, and luteolin enhanced anti-proliferation effect of cisplatin on cisplatin-resistant ovarian cancer CAOV3/DDP cells. Flow cytometry revealed that luteolin enhanced cell apoptosis in combination with cisplatin. Western blotting and qRT-PCR assay revealed that luteolin increased cisplatin-induced downregulation of Bcl-2 expression. In addition, wound-healing assay and Matrigel invasion assay showed that luteolin and cisplatin synergistically inhibited migration and invasion of CAOV3/DDP cells. Moreover, in vivo, luteolin enhanced cisplatin-induced reduction of tumor growth as well as induction of apoptosis. We suggest that luteolin in combination with cisplatin could potentially be used as a new regimen for the treatment of ovarian cancer.
The von Hippel-Lindau (VHL) is deficient in ∼70% of clear-cell renal cell carcinomas (ccRCC), which contributes to the carcinogenesis and drug resistance of ccRCC. Here we show that VHL-deficient ccRCC cells present enhanced cytotoxicity of anthracyclines in a hypoxia-inducible factor-independent manner. By subtractive proteomic analysis coupling with RNAi or overexpression verification, aldehyde dehydrogenase 2 (ALDH2) is found to be transcriptionally regulated by VHL and contributes to enhanced anthracyclines cytotoxicity in ccRCC cells. Furthermore, VHL regulates ALDH2 expression by directly binding the promoter of −130 bp to −160 bp to activate the transcription of hepatocyte nuclear factor 4 alpha (HNF-4α). In addition, a positive correlation is found among the protein expressions of VHL, HNF-4α and ALDH2 in ccRCC samples. These findings will deepen our understanding of VHL function and shed light on precise treatment for ccRCC patients.
Proanthocyanidins, including polymers with both low and high degrees of polymerization, are the focus of intensive research worldwide due to their high antioxidant activity, medicinal applications, and pharmacological properties. However, the nutritional value of these compounds is limited because they readily form complexes with proteins, polysaccharides, and metal ions when consumed. In this study, we examined the effects of proanthocyanidins with different degrees of polymerization on white mice. Twenty-four male white mice were randomly divided into three groups of eight mice each and fed proanthocyanidins with a low degree of polymerization or a high degree of polymerization or a distilled water control via oral gavage over a 56-day period. We examined the effects of these proanthocyanidins on digestive enzyme activity and nutrient absorption. Compared to the control group, the group fed high-polymer proanthocyanidins exhibited a significant reduction in net body mass, total food intake, food utility rate, amylase activity, protease activity, and major nutrient digestibility (p < 0.05), while the group fed low-polymerization proanthocyanidins only exhibited significant reductions in total food intake, α-amylase activity, and apparent digestibility of calcium and zinc (p < 0.05). Therefore, proanthocyanidins with a high degree of polymerization had a greater effect on digestive enzyme activity and nutrient absorption than did those with a low degree of polymerization. This study lays the foundation for elucidating the relationship between procyanidin polymerization and nutrient uptake, with the aim of reducing or eliminating the antinutritional effects of polyphenols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.