This study aimed at evaluate the effects of different aperture-sized type I collagen/silk fibroin (CSF) scaffolds on the proliferation and differentiation of human dental pulp cells (HDPCs). The CSF scaffolds were designed with 3D mapping software Solidworks. Three different aperture-sized scaffolds (CSF1–CSF3) were prepared by low-temperature deposition 3D printing technology. The morphology was observed by scanning electron microscope (SEM) and optical coherence tomography. The porosity, hydrophilicity and mechanical capacity of the scaffold were detected, respectively. HDPCs (third passage, 1 × 105 cells) were seeded into each scaffold and investigated by SEM, CCK-8, alkaline phosphatase (ALP) activity and HE staining. The CSF scaffolds had porous structures with macropores and micropores. The macropore size of CSF1 to CSF3 was 421 ± 27 μm, 579 ± 36 μm and 707 ± 43 μm, respectively. The porosity was 69.8 ± 2.2%, 80.1 ± 2.8% and 86.5 ± 3.3%, respectively. All these scaffolds enhanced the adhesion and proliferation of HDPCs. The ALP activity in the CSF1 group was higher than that in the CSF3 groups (P < 0.01). HE staining showed HDPCs grew in multilayer within the scaffolds. CSF scaffolds significantly improved the adhesion and ALP activity of HDPCs. CSF scaffolds were promising candidates in dentine-pulp complex regeneration.
Nowadays, microRNA-375 (miR-375) has been implicated in many types of cancers, including hepatocellular carcinoma (HCC), and the functions of miRNAs encapsulated by extracellular vesicles (EV) in HCC progression have also been extensively investigated. In this research, we aimed to probe into the mechanism of EV-encapsulated miR-375 from bone marrow-derived mesenchymal stem cells (BM-MSCs) in HCC progression. At first, miR-375 expression in HCC tissues and cells was detected using RT-qPCR, and miR-375 was overexpressed to specify the effects of miR-375 on the malignant phenotype of HCC cells. miR-375 was downregulated in HCC, and overexpression of miR-375 suppressed HCC cell growth. Then, BM-MSCs and EV were isolated and identified, and, EV were cocultured with HCC cells for further functional assays. It was found that miR-375 encapsulated by EV could restrict the malignant phenotypes of HCC cells. Furthermore, the downstream genes and signaling cascades involved in HCC growth were investigated. HOXB3 was determined to be a downstream target of miR-375, and upregulation of miR-375 decreased Wnt1 and β-catenin protein expression. Furthermore, HOXB3 blocked the repressive effects of miR-375 on HCC cells and Wnt1 and β-catenin expression. This study highlights that miR-375 encapsulated by EV inhibits HCC development via modulating the HOXB3/Wnt/β-catenin axis.
Amelogenin can induce odontogenic differentiation of human dental pulp cells (HDPCs), which has great potential and advantages in dentine-pulp complex regeneration. However, the unstability of amelogenin limits its further application. This study constructed amelogenin self-assembling peptide hydrogels (L-gel or D-gel) by heating-cooling technique, investigated the effects of these hydrogels on the odontogenic differentiation of HDPCs, and explored the underneath mechanism. The critical aggregation concentration, conformation, morphology, mechanical property and biological stability of the hydrogels were characterized, respectively. The effects of the hydrogels on the odontogenic differentiation of HDPCs were evaluated via alkaline phosphatase activity measurement, qRT-PCR, western blot, Alizarin red staining and scanning electron microscope. The mechanism was explored via signaling pathway experiments. Results showed that both the L-gel and D-gel stimulated the odontogenic differentiation of HDPCs at both day 7 and day 14, while the D-gel showed the highest enhancement effects. Meanwhile, the D-gel promoted calcium accumulation and mineralized matrix deposition at day 21. The D-gel activated MAPK-ERK1/2 pathways in HDPCs, and induced the odontogenic differentiation via ERK1/2 and TGF/smad pathways. Overall, our study demonstrated that the amelogenin peptide hydrogel stimulated the odontogenic differentiation and enhanced mineralization, which held big potential in the dentine-pulp complex regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.