To broaden its’ effective frequency range and to improve its transmission loss performance, a modified design of a Helmholtz resonator is proposed and evaluated by implementing a rigid baffle in its cavity. Comparison is then made between the proposed design and the conventional one by considering a rectangular duct with the resonator implemented in the presence of a mean grazing flow. For this, a linearized 2D Navier-Stokes model in frequency domain is developed. After validated by benchmarking with the available experimental data and our experimental measurements, the model is used to evaluate the effects of (1) the width Lp of the rigid baffle, (2) its implementation location/height Hg, (3) its implementation configurations (i.e., attached to the left sidewall or right sidewall), (4) the grazing mean flow Mu (Mach number), and (5) the neck shape on a noise damping effect. It is shown that as the rigid baffle is attached in the 2 different configurations, the resonant frequencies and the maximum transmission losses cannot be predicted by using the classical theoretical formulation ω2=c2S/VLeff, especially as the grazing Mach number Mu is greater than 0.07, i.e., Mu>0.07. In addition, there is an optimum grazing flow Mach number corresponding to the maximum transmission loss peak, as the width Lp is less than half of the cavity width Dr, i.e., Lp/Dr≤0.5. As the rigid plate width is increased to Lp/Dr=0.75, one additional transmission loss peak at approximately 400 Hz is produced. The generation of the 12 dB transmission loss peak at 400 Hz is shown to attribute to the sound and structure interaction. Finally, varying the neck shape from the conventional one to an arc one leads to the dominant resonant frequency being increased by approximately 20% and so the secondary transmission loss peak by 2-5 dB. The present work proposes and systematically studies an improved design of a Helmholtz resonator with an additional transmission loss peak at a high frequency, besides the dominant peak at a low frequency.
An oblique detonation wave in two-phase kerosene–air mixtures over a wedge is numerically studied for the first time. The features of initiation and stabilisation of the two-phase oblique detonation are emphasised, and they are different from those in previous studies on single-phase gaseous detonation. The gas–droplet reacting flow system is solved by means of a hybrid Eulerian–Lagrangian method. The two-way coupling for the interphase interactions is carefully considered using a particle-in-cell model. For discretisation of the governing equations of the gas phase, a WENO-CU6 scheme (Hu et al., J. Comput. Phys., vol. 229 (23), 2010, pp. 8952–8965) and a sixth-order compact scheme are employed for the convective terms and the diffusive terms, respectively. The inflow parameters are chosen properly from real flight conditions. The fuel vapour, droplets and their mixture are taken as the fuel in homogeneous streams with a stoichiometric ratio, respectively. The effects of evaporating droplets and initial droplet size on the initiation, transition from oblique shock to detonation and stabilisation are elucidated. The two-phase oblique detonation wave is stabilised from the oblique shock wave induced by the wedge. As the mass flow rate of droplets increases, a shift from a smooth transition with a curved shock to an abrupt one with a multi-wave point is found, and the initiation length of the oblique detonation increases, which is associated with the increase of the transition pressure. By increasing the initial droplet size, a smooth transition pattern is observed, even if the equivalence ratio remains constant, and the transition pressure decreases. The factor responsible is incomplete evaporation before the detonation fronts, which results in a complicated flame structure, including regimes of formation of oblique detonation, evaporative cooling of droplets and post-detonation reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.