In vehicular ad hoc networks (VANETs), one of the important challenges is the lack of precise mathematical modeling taking into account the passive vacation triggered by the zero-arrival state of nodes. Therefore, a polling-based access control is proposed in this paper using a sleeping schema to meet the challenge of quality of service (QoS) and energy-efficient transport in VANET environments for smart cities. Based on IEEE 802.11p, it was developed in an attempt to improve the energy efficiency of the hybrid coordination function of controlled channel access (HCCA) through a self-managing sleeping mechanism for both the roadside unit (RSU) and on-board units (OBUs) or sensor nodes according to the traffic load in vehicle -to-infrastructure (V2I) scenarios. Additionally, a Markov chain was developed for analyzing the proposed mechanism, and the exact mathematical model is provided with regard to the passive vacation. Then, the performance characteristics—including the mean cyclic period, delay, and queue length—were accurately obtained. In addition, the closed-form expression of the quantitative relationship among sleeping time, performance characteristics, and service parameters was obtained, which can easily evaluate the energy efficiency. It was proven that theoretical calculations were completely consistent with simulation results. The simulation results demonstrate that the suggested method had much lower energy consumption than the standard strategy at the expense of rarely access delay.
Summary
We consider and analyze a single‐server multiqueue polling model with inner arrivals. Customers arriving at the queue before polling instant could receive service in the current polling round; furthermore, each one could be retried (turns into an inner arrival) a given number of times with a specified probability. Such polling model can be used to study the performance of certain scheduling data transmission in the Internet of Things (IoT) and the relationship between data retransmission and delay. We obtain the closed‐form expression for the generating function of the amount of customers, which are presented at polling instants. Then, it is used to derive the precise closed‐form formula of mean queue length and mean waiting time in symmetric system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.