Rotating ring disk electrodes (RRDEs) are a powerful and versatile tool for mechanistically investigating electrochemical reactions at electrode surfaces, particularly in the area of electroanalysis and catalysis. Despite their importance, only limited electrode materials (typically glassy carbon, platinum, and gold) and combinations thereof are available commercially. In this work, we present a method employing three-dimensional (3D) printing in conjunction with machined brass components to produce housing, which can accommodate any electrode material in, e.g ., pressed powdered pellet, wafer, rod, foil, or vapor deposited onto a conductive substrate form. In this way, the range and usability of RRDEs is extended. This custom do-it-yourself (DIY) approach to fabricating RRDEs also enables RRDEs to be produced at a significant fraction of the cost of commercial RRDEs. To illustrate the versatility of our approach, coplanar boron-doped diamond (BDD) RRDEs are fabricated for the first time using the approach described. Experimental collection efficiencies for the redox couple FcTMA + /FcTMA 2+ are found to be very close to those predicted theoretically. BDD electrodes serve as an ideal electrocatalyst support due to their low background currents, wide solvent potential window in aqueous solution, and chemical and electrochemical stability in acid and alkali solutions. The BDD RRDE configuration is employed to investigate the importance of surface-incorporated nondiamond carbon in BDD on hydrogen peroxide generation via the oxygen reduction reaction in acid solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.