Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79 Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO 2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.
Abstract. Vegetation indices (VIs) are widely used in long-term measurement studies of vegetation changes, including seasonal vegetation activity and interannual vegetation-climate interactions. There is much interest in developing cross-sensor/multi-mission vegetation products that can be extended to future sensors while maintaining continuity with present and past sensors. In this study we investigated multi-sensor spectral bandpass dependencies ofthe enhanced vegetation index (EVI), a 2-band EVI (EVI2), and the normalized difference vegetation index (NDVI) using spectrally convolved Earth Observing-l (EO-I) Hyperion satellite images acquired over a range of vegetation conditions. Two types of analysis were carried out, including (1) empirical relationships among sensor reflectances and VIs and (2) decomposition of bandpass contributions to observed cross-sensor VI differences. VI differences were a function of cross-sensor bandpass disparities and the integrative manner in which bandpass differences in red, near-infrared (NIR), and blue reflectances combined to influence a VI. Disparities in blue bandpasses were the primary cause of EVI differences between the Moderate Resolution Imaging Spectroradiometer (MODIS) and other course resolution sensors, including the upcoming Visible Infrared Imager / Radiometer Suite (VIIRS). The highest compatibility was between VIIRS and MODIS EVI2 while A VHRR NDVI and EVI2 were the least compatible to MODIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.