Multiple-input multiple-output (MIMO) systems suffer from high BER in the mining environment. In this paper, the mine MIMO depth receiver model is proposed. The model uses densely connected convolutional networks for feature extraction and constructs multiple binary classifiers to recover the original information. Compared with conventional MIMO receivers, the model has no error accumulation caused by processes such as decoding and demodulation. The experimental results show that the model has better performance than conventional decoding methods under different modulation codes and variations in the number of transmitting terminals. Furthermore, we demonstrate that the model can still achieve effective decoding and recover the original information with some data loss at the receiver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.