Although the treatment of natural surface waters by coagulation has been investigated extensively, the detailed interaction between natural organic matter and alum is still not adequately understood or predictable, owing to the complexity of different components of the organic matrix and the conditions during coagulation. In this paper, we present the results of a novel approach to the study of the topic, which involved the progressive separation of organic components according to size, followed by coagulation of the filtrate solution, in order to expose the influence of particular organic fractions. Using two natural water sources, representative of lake and river waters, solutions of different organic content were obtained by progressively filtering the source waters using membranes of decreasing pore size; viz. microfiltration (MF), ultrafiltration (UF), and two grades of nanofiltration (NF). While MF had little impact on the range of organics present, UF was able to separate biopolymers (MW > 100 kDa), and NF had a substantially impact on the separation of medium-high MW (1-10 kDa) substances. The results of the coagulation tests showed that the size of flocs was substantially greater when biopolymers were present, suggesting their beneficial role in bridging precipitated Al(OH) nanoparticles. For the smaller organic fractions (<10 kDa), the results showed a trend of increasing floc size with decreasing organic MW and concentration, but the trend was minor and may be explained by charge effects. Very similar results were found with both water sources, which support the main finding that biopolymers have an important influence on floc formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.