Electrodeposited Ni-W alloy coatings are considered to be one of the most suitable candidate coatings to replace carcinogenic hexavalent chromium coatings. In this work, Ni-W alloys are electrodeposited from pyrophosphate baths containing different concentrations of Na2WO4 2H2O (CW) at 40 °C. Both CW and the applied current density can affect the W content in the coatings. The effect of CW becomes weaker with the increased current density. The Ni-W alloys with 15 ± 5 wt.% W (Ni-15 wt.% W) are obtained from the bath containing 40 g L−1 CW at a high current of 8 A dm−2. The microhardness, corrosion resistance and hydrogen evolution reaction (HER) are measured with a microhardness tester and an electrochemical workstation. The modified properties are studied by heat treatment from 200 to 700 °C. The highest microhardness of 895.62 HV and the better HER property is presented after heat treatment at 400 °C, while the best corrosion resistance in 3.5 wt.% NaCl solution appears at 600 °C.
A simple and rapid microwave-induced solution flameless combustion method to prepare high-capacity Ni-Cu co-doped spinel LiMn2O4 is provided in this work. Ni-Cu co-doping effectively reduces the lattice parameters and Jahn-Teller...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.