Concussion, or mild traumatic brain injury (mTBI), is frequently associated with sports activities. It has generally been accepted that neck strengthening exercises are effective as a preventive strategy for reducing sports-related concussion risks. However, the interpretation of the link between neck strength and concussion risks remains unclear. In this study, a typical helmeted head-to-head impact in American football was simulated using the head and neck complex finite element (FE) model. The impact scenario selected was previously reported in lab-controlled incident reconstructions from high-speed video footages of the National Football League using two head-neck complexes taken from Hybrid III dummies. Four different muscle activation strategies were designed to represent no muscle response, a reactive muscle response, a pre-activation response, and response due to stronger muscle strength. Head kinematics and various head/brain injury risk predictors were selected as response variables to compare the effects of neck muscles on the risk of sustaining the concussion. Simulation results indicated that active responses of neck muscles could effectively reduce the risk of brain injury. Also, anticipatory muscle activation played a dominant role on impact outcomes. Increased neck strength can decrease the time to compress the neck and its effects on reducing brain injury risks need to be further studied.
This paper presents a novel microelectrode arrays using high-temperature grown vertically aligned carbon nanotubes (CNTs) integrated on a flexible and biocompatible parylene substrate. A simple microfabrication process is proposed to unite the high quality vertical CNTs grown at high temperature with the heat sensitive parylene substrate in a highly controllable manner. Briefly, the CNTs electrode is encapsulated by two layers of parylene and the device is released using xenon difluoride (XeF2). The process is compatible with wafer-scale post complementary metal oxide semiconductor integration. Lower impedance and larger interfacial capacitance have been demonstrated using CNTs compared to a Pt electrode. The flexible CNT electrodes have been utilized for extracellular neuronal recording and stimulation in rats. The signal-to-noise ratio of the device is about 12.5. The threshold voltage for initiating action potential is about 0.5 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.