Circulating tumor cells (CTCs) are promising biomarkers for clinical application. Cancer screening with Low-Dose Computed Tomography (LDCT) and CTC detections in pulmonary nodule patients has never been reported. The aim of this study was to explore the effectiveness of the combined methods to screen lung cancer. Out of 8313 volunteers screened by LDCT, 32 ground-glass nodules (GGNs) patients and 19 healthy volunteers were randomly selected. Meanwhile, 15 lung cancer patients also enrolled. CellCollector, a new CTC capturing device, was applied for CTCs detection. In GGNs group, five CTC positive patients with six CTCs were identified, 15.6% were positive (range, 1–2). In lung cancer group, 73.3% of the analyzed CellCollector cells were positive (range, 1–7) and no “CTC-like” events were detected in healthy group. All CTCs detected from GGNs group were isolated from the CellCollector functional domain and determined by whole genomic amplification for next-generation sequencing(NGS) analysis. NGS data showed that three cancer-related genes contained mutations in five CTC positive patients, including KIT, SMARCB1 and TP53 genes. In four patients, 16 mutation genes existed. Therefore, LDCT combined with CTC analysis by an in vivo device in high-risk pulmonary nodule patients was a promising way to screen early stage lung cancer.
As the leading cause of cancer-associated mortality globally among males in 2012, lung cancer is a disease of particular concern. Previously, the neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) were revealed to be prognostic factors for various types of cancer, including lung cancer. In the present study, a retrospective review was conducted with patients who were diagnosed with lung cancer between January 1, 2000 and December 31, 2005 in the Fourth Hospital of Hebei Medical University. A total of 695 patients were included, and the optimal cutoffs of the NLR and the PLR were 6.0 and 248.0, respectively. There were statistically significant associations between tumor-node-metastasis (TNM) stage, surgery, metastasis incidence and NLR (P<0.001). The associations between TNM stage, surgery incidence and PLR were also revealed to be statistically significant (P<0.001). Patients in the low NLR group demonstrated longer overall survival (OS) than patients in the high NLR group (819.57 days vs. 629.86 days, P=0.041). The NLR at diagnosis was demonstrated to be an independent prognostic factor for OS. Thus, the NLR may be a promising approach for predicting the prognosis of patients with lung cancer.
Background and Objective: Compared with tissue biopsy, liquid biopsy is the most preferable non-invasive promising method in personalized medicine, although it has many limitations in isolating circulating tumor cells (CTC). Lung cancer associated mortality is drastically increased due to a shortfall of early-stage detection, which remains a challenge. Herein, we aimed to detect lung cancer at an early-stage using CellCollector device. Methods: 39,627 volunteers underwent low-dose computed tomography; 2508 cases with pulmonary nodules and 7080 with no pulmonary nodules were chosen. After follow-up, 24 patients were diagnosed with early-stage non-small cell lung cancer (NSCLC), and subjected to CTC detection using CellCollector, along with 72 healthy volunteers. Immunofluorescence staining for EpCAM/CKs and CD45 were performed for CTC validation. Results: Fifteen out of twenty-four (stage I, n = 18; stage II, n = 6) early-stage lung cancer patients were found to be CTC-positive, whereas no CTC was found in the control group. Genetic mutation of TP53, ERBB2, PDGFRA, CFS1R and FGFR1 in the CTC revealed 71.6% of the mutation sites similar to the tumor tissues of 13 patients. Molecular characterization revealed higher expression of protein PD-LI in CTC (40%) as compared to tumor tissue (26.7%). Moreover, CTC clusters were detected in 40% of patients. Conclusion: CTC detection using the CellCollector in early-stage NSCLC had a relative high capture rate. Moreover, CTC analysis is a prospective setting for molecular diagnostic in cases when tumor tissue biopsy is not desirable.
Circulating microRNA (miR)-208a is specifically expressed in the heart muscle, which is involved in the regulation of myosin during cardiac development. Previous studies reported that cardiac-specific miR-208a level is significantly higher in plasma of coronary heart disease (CHD) patients. However, whether it correlates with severity of CHD, has never been elucidated before. The aim of this study was to explore the association between miR-208a and the presence and severity of CHD. Samples were collected from 290 CHD patients and 110 subjects with angiographic exclusion of CHD. Circulating miRNA-208a expression was detected using quantitative real-time PCR. The Gensini score was used to evaluate the severity of coronary stenotic lesions. Expression of miRNA-208a was identified on the basis of the quartiles of the Gensini score, and association between the miRNA-208a levels and CHD was analyzed. Diagnostic potential of miR-208a of CHD was performed by ROC analysis. CHD patients had higher miRNA-208a expression (1.61, 0.45-3.86 vs. 0.66, 0.11-1.42, p < .001), and the biomarker level significantly increased following an increasing the Gensini score (p < .001). Gensini score was significantly associated with miRNA-208a expression (r = 0.8525, p < .001). The optimal cut-off value of the relative level of miR-208a was with a specificity of 93.6% and a sensitivity of 75.5%. The AUC of miR-208a was 0.919 (95% CI, 0.893-0.945; p < .001). These preliminary results suggest that the expression of miR-208a may be associated with atherogenesis. The level of circulating miR-208a in predicting the severity of coronary atherosclerosis may have a relatively certain value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.