Background Insulin resistance (IR), endothelial dysfunction, inflammation, glucose and lipid metabolism disorders, and thrombosis are believed involved in coronary heart disease (CHD) and non-alcoholic fatty liver disease (NAFLD). Triglyceride-glucose (TyG) index, a new IR indicator, is correlated with NAFLD occurrence and severity, but its relationship with CHD risk remains unclear. This study investigated the correlation between TyG index and CHD risk among NAFLD patients. Methods This cross-sectional study included 424 patients with NAFLD and chest pain in the Department of Cardiology, The Second Hospital of Shanxi Medical University, from January 2021 to December 2021. The TyG index was calculated and coronary angiography performed. All individuals were divided into NAFLD + CHD and NAFLD groups and then by TyG index level. The t-test, Mann–Whitney U-test, or one-way analysis of variance compared differences in continuous variables, while the chi-square test or Fisher’s exact test compared differences in categorical variables. Logistic regression analysis determined the independent protective or hazardous factors of NAFLD with CHD. The receiver operating characteristic curve evaluated the ability of different TyG index rule-in thresholds to predict CHD. The relationship between Gensini score and TyG index was evaluated using linear correlation and multiple linear regression. Results CHD was detected in 255 of 424 patients. Compared to NAFLD group, multivariate logistic regression showed that TyG index was a risk factor for CHD among NAFLD patients after adjustment for age, sex, hypertension, and diabetes mellitus with the highest odds ratio (OR, 2.519; 95% CI, 1.559–4.069; P < 0.001). TG, low-density lipoprotein cholesterol, FBG and TYG–body mass index were also risk factors for CHD among NAFLD patients. High-density lipoprotein cholesterol level was a protective factor for CHD events in patients with NAFLD. In an in-depth analysis, multivariate logistic regression analysis showed that each 1-unit increase in TyG index was associated with a 2.06-fold increased risk of CHD (OR, 2.06; 95% CI, 1.16–3.65; P = 0.013). The multifactor linear regression analysis showed each 0.1-unit increase in TyG in the NAFLD-CHD group was associated with a 2.44 increase in Gensini score (β = 2.44; 95% CI, 0.97–3.91; P = 0.002). Conclusions The TyG index was positively correlated with CHD risk in NAFLD patients and reflected coronary atherosclerosis severity.
Background There is a bidirectional effect between sleep disorders and Mediterranean diet (MED), but the joint effect of MED and sleep disorders on mortality is unclear. The aim of this study was to investigate whether there is a synergistic effect of adherence to MED and sleep disorders on all-cause and cause-specific mortality. Methods The study included 23,212 individuals in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2014. A 9-point evaluation score, alternative Mediterranean diet (aMED) index was used to assess adherence to MED. Sleep disorder and hours of sleep were assessed by structured questionnaires. Cox regression models were used to assess the relationship between sleep disorders, aMED and all-cause mortality, cause-specific mortality (cardiovascular-related death, cancer-related death). The interaction effect of sleep disorders with aMED on mortality was further assessed. Results Results showed that participants with lower aMED and presence of sleep disorders had significantly higher risk of all-cause mortality and cardiovascular-related mortality (HR, 2.16, 95% CI, 1.49–3.13, P < 0.0001; HR, 2.68, 95% CI, 1.58–4.54, P = 0.0003). A significant interaction effect was found between aMED and sleep disorders on cardiovascular mortality (p for interaction = 0.033). No significant interaction existed between aMED and sleep disorders on all-cause mortality (p for interaction = 0.184) and cancer-related mortality (p for interaction = 0.955). Conclusions Poorer adherence to MED and sleep disorders synergistically increased long-term all-cause mortality and cardiovascular mortality in NHANES population.
Background. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancers. As cuproptosis, a new cell death mechanism proposed recently, differs from all other known mechanisms regulating cell death, we aimed to create prognostic markers using cuproptosis-related long non-coding ribonucleic acids (RNAs; lncRNAs) and elucidate the molecular mechanism. Methods. Data from transcriptome RNA sequencing of ccRCC samples and the relevant clinical data were downloaded from The Cancer Genome Atlas, and Pearson’s correlation analysis was implemented to obtain the cuproptosis-related lncRNAs. Then, univariate Cox, multivariate Cox, and Least Absolute Shrinkage and Selection Operator Cox analyses were performed to construct the risk signatures. The cuproptosis-related lncRNAs predictive signature was evaluated with receiver operating characteristic curves and subgroup analysis. Finally, Gene Set Enrichment Analysis (GSEA), single-sample GSEA (ssGSEA), tumor immune microenvironment (TIME), and immune checkpoints were performed to explore the relationship between immunity and patient prognosis. Results. Five cuproptosis-related lncRNAs, including FOXD2-AS1, LINC00460, AC091212.1, AC007365.1, and AC026401.3, were used to construct the signature. In the training and test sets, low-risk groups (as identified by a risk score lower than the median) demonstrated a better prognosis with an area under the curve for 1-, 3-, and 5-year survival being 0.793, 0.716, and 0.719, respectively. GSEA analysis suggested significant enrichment of the tricarboxylic acid cycle and metabolism-related pathways in the low-risk group. Besides, both ssGSEA and TIME suggested that the high-risk group exhibited more active immune infiltration. Conclusion. We proposed a cuproptosis-related lncRNAs signature, which had the potential for prognoses and prediction. Our findings might contribute to elucidating potential genomic biomarkers and targets for future therapies in the cuproptosis-related signaling pathways.
Bladder cancer is the second most common malignant tumor in the male genitourinary system. This study explored the prognostic role of necroptosis-related long noncoding RNAs (LncRNAs) in bladder cancer.We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish a necroptosis-related lncRNA prognostic signature. Then, 13 necroptosis-related lncRNAs were included in risk signature. Patients were divided into the high- and low-risk group based on the median risk score. The risk signature predicted that the areas under the receiver operating characteristic curve of patients at 1 year, 3 years and 5 years were 0.74, 0.78 and 0.79, respectively. Next, nomograms and correction curves were established using risk signature and clinicopathological factors. The nomogram-corrected curve shows a good fit. Gene Set Enrichment Analysis was used to explore the possible molecular mechanisms underlying the different prognosis of the low-risk and high-risk of patients, and showed that tumor-related signaling pathways and intercellular connectivity-related signaling pathways were significantly enriched in the high-risk group, while metabolism-related pathways were enriched in the low-risk group. In addition, Immune cell infiltration analysis and was performed on the two groups of patients and the response to immunotherapy was judged. Finally, tumor mutation data were analyzed, and potentially sensitive chemotherapy drugs were screened. The low-risk group was more sensitive to methotrexate while the patients in the high-risk group were more sensitive to cisplatin, docetaxel, paclitaxel and thapsigargin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.