We present a new method for constructing D-dimensional minimally superintegrable systems based on block coordinate separation of variables. We give two new families of superintegrable systems with N (N ≤ D) singular terms of the partitioned coordinates and involving arbitrary functions. These Hamiltonians generalize the singular oscillator and Coulomb systems. We derive their exact energy spectra via separation of variables. We also obtain the quadratic algebras satisfied by the integrals of motion of these models. We show how the quadratic symmetry algebras can be constructed by novel application of the gauge transformations from those of the non-partitioned cases. We demonstrate that these quadratic algebraic structures display an universal nature to the extent that their forms are independent of the functions in the singular potentials. *
In this thesis, we study various extensions of Calogero models and superintegrable systems. We construct a kN-body one-dimensional model which reduces to the familiar Calogero model when k = 1. We present a class of many-body systems that are equivalent to harmonic oscillators. We study interesting extensions of the D-dimensional Coulomb-Kepler system and show that when the extension satisfies certain conditions, then some components of the Laplace-Runge-Lenz vector can be extended to conserved quantity of the new models. By introducing block separation of variables, we construct the Kepler-singular oscillator type models which are a new family of superintegrable systems. We also use separation of variables to obtain the energy spectrum, eigenfunctions and corresponding quadratic algebraic structures. Separation of variables is not only used for solving eigenvalue problems but also provides us with new tools for generalizing superintegrable systems. We generalize the double harmonic-singular oscillators and Kepler-singular oscillator systems. The integrals of new models now can involve angles from block spherical coordinates. A derivation of more general quadratic algebraic structures is presented as well. We also give examples to show they can be solved in terms of so-called X 1 Jacobi polynomials. ABSTRACT iii Declaration by authorThis thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.