The development of silica‐filling elastomers with high mechanical performance and good processability is still a great challenge. In this study, we fabricated siloxane‐grafted atactic 1,2‐polybutadiene (1,2‐PB) rubber through grafting poly(1,3‐butadiene)‐block‐(dimethylsiloxane) (PB‐b‐PDMS) onto 1,2‐PB molecular chains by coordination polymerization using a molybdenum (Mo)‐based catalyst system. The PB‐b‐PDMS with active double bonds was synthesized by anionic polymerization. Fourier transform infrared analysis (FTIR), elementary analysis, and GPC‐MALLS‐viscometer analyses verified the incorporation of PB‐b‐PDMS and the grafting structure in the resulting polymer. Scanning electron microscope (SEM), bound rubber testing, and dynamic mechanical analysis demonstrated that the graft‐modification with PB‐b‐PDMS improved silica dispersity in the 1,2‐PB matrix because the incorporation of siloxane groups provided stronger interfacial interaction with silica. Meanwhile, the graft‐modified 1,2‐PB exhibited lower Mooney viscosity, higher tensile strength, and lower heat build‐up than unmodified 1,2‐PB. This concept provides novel inspiration for the preparation of advanced rubber with promoted silica compatibility and mechanical performance.
In this study, a butadiene-isoprene coordination polymerization was initiated by a binary molybdenum (Mo)-based catalytic system consisting of modified MoO2Cl2 as the primary catalyst, triethyl aluminum substituted by m-cresol as the co-catalyst and tris(nonyl phenyl) phosphate (TNPP) as the ligand. The effects of the amount of catalyst and type of co-catalyst were investigated in detail. Experimental results indicated that when the butadiene-isoprene coordination polymerization was initiated by the binary Mo-based catalytic system, the monomer conversion could reach 90%. The resulting butadiene units were primarily based on 1,2-structures, and the reactivity ratios of butadiene and isoprene were 1.13 and 0.31, respectively. The reaction in the catalytic system was attributed to the non-ideal and non-constant ratio copolymerization. When the addition of isoprene monomers was relatively low, the isoprene units on the butadiene-isoprene copolymers were primarily based on the 1,2- and 3,4-structures. Moreover, the orientation of active centers to 1,2- and 3,4-structures gradually decreased with an increase in the addition of isoprene monomers, which resulted in the generation of high vinyl butadiene-isoprene copolymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.