Tumor microenvironment (TME) has been illustrated their clinic pathological significance in predicting outcomes and therapeutic efficacy by more and more studies. Tumor purity, which reflects the features of TME, is defined as the proportion of cancer cell in the tumor tissue. However, the current staging and prognostic prediction system in gastric cancer (GC) paid little attention to TME. Therefore, we carried out the study to explore the role of tumor purity in GC. We retrospectively collected the clinical and transcriptomic data from four public data sets (n = 1340), GSE15459 , GSE26253 , GSE62254 , and The Cancer Genome Atlas (TCGA). About 34 GC patients from Fudan University Shanghai Cancer Center (FUSCC) were assigned as an independent validation group. Tumor purity was measured by a computational method. Low tumor purity was associated with unfavorable prognosis, upregulated EMT and stemness pathways, more infiltrating of Tregs, M1 and M2 macrophages and a higher expression level of various immune checkpoints and chemokines recruiting immune suppressive cells. Our study indicates low tumor purity in GC was associated with unfavorable prognosis and immune‐evasion phenotype. Further investigations toward tumor purity in GC may contribute to prognosis prediction and the decision of therapy strategies.
We built nomograms for the prediction of OS and CCSS of patients with Stage IV colorectal cancer. Performance of the model was excellent.
Background There is no consensus on whether triplet regimen is better than doublet regimen in the first‐line treatment of advanced gastric cancer (AGC). We aimed to compare the efficacy and safety of oxaliplatin plus capecitabine (XELOX) and epirubicin, oxaliplatin, plus capecitabine (EOX) regimens in treating AGC. Methods This phase III trial enrolled previously untreated patients with AGC who were randomly assigned to receive the XELOX or EOX regimen. The primary endpoint was non‐inferiority in progression‐free survival (PFS) for XELOX as compared with EOX on an intention‐to‐treat basis. Results Between April 10, 2015 and August 20, 2020, 448 AGC patients were randomized to receive XELOX (n = 222) or EOX (n = 226). The median PFS (mPFS) was 5.0 months (95% confidence interval [CI] = 4.5‐6.0 months) in the XELOX arm and 5.5 months (95% CI = 5.0‐6.0 months) in the EOX arm (hazard ratio [HR] = 0.989, 95% CI = 0.812‐1.203; Pnon‐inferiority = 0.003). There was no significant difference in median overall survival (mOS) (12.0 vs. 12.0 months, P = 0.384) or objective response rate (37.4% vs. 45.1%, P = 0.291) between the two groups. In patients with poorly differentiated adenocarcinoma and liver metastasis, the EOX arm had a significantly longer mOS (P = 0.021) and a trend of longer mPFS (P = 0.073) than the XELOX arm. The rate of grade 3/4 adverse events (AEs) was 42.2% (90/213) in the XELOX arm and 72.5% (156/215) in the EOX arm (P = 0.001). The global health‐related quality of life (QoL) score was significantly higher in the XELOX arm than in the EOX arm during chemotherapy. Conclusions This non‐inferiority trial demonstrated that the doublet regimen was as effective as the triplet regimen and had a better safety profile and QoL as a first‐line treatment for AGC patients. However, the triplet regimen might have a survival advantage in patients with poorly differentiated adenocarcinoma and liver metastasis.
Objective: DNA damage response (DDR) genes have low mutation rates, which may restrict their clinical applications in predicting the outcomes of immune checkpoint inhibitor (ICI) treatment. Thus, a systemic analysis of multiple DDR genes is needed to identify potential biomarkers of ICI efficacy. Methods: A total of 39,631 patients with mutation data were selected from the cBioPortal database. A total of 155 patients with mutation data were obtained from the Fudan University Shanghai Cancer Center (FUSCC). A total of 1,660 patients from the MSK-IMPACT cohort who underwent ICI treatment were selected for survival analysis. A total of 249 patients who underwent ICI treatment from the Dana-Farber Cancer Institute (DFCI) cohort were obtained from a published dataset. The Cancer Genome Atlas (TCGA) level 3 RNA-Seq version 2 RSEM data for gastric cancer were downloaded from cBioPortal. Results: Six MMR and 30 DDR genes were included in this study. Six MMR and 20 DDR gene mutations were found to predict the therapeutic efficacy of ICI, and most of them predicted the therapeutic efficacy of ICI, in a manner dependent on TMB, except for 4 combined DDR gene mutations, which were associated with the therapeutic efficacy of ICI independently of the TMB. Single MMR/ DDR genes showed low mutation rates; however, the mutation rate of all the MMR/DDR genes associated with the therapeutic efficacy of ICI was relatively high, reaching 10%-30% in several cancer types. Conclusions: Coanalysis of multiple MMR/DDR mutations aids in selecting patients who are potential candidates for immunotherapy. KEYWORDSImmune checkpoint inhibitor therapy; prediction of efficacy; tumor mutation burden; mismatch repair deficiency; DNA damage response genes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.