We further develop a simple device, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH), for measuring the complete spatiotemporal intensity and phase, Ix; y; t and ϕx; y; t, respectively, of an arbitrary ultrashort pulse on a single camera frame (and hence, on a single shot). We have increased the measurable bandwidth, eliminated most aberrations, and improved the uniformity of the multiple holograms in the device. We demonstrate these improvements by making single-camera-frame measurements of spatiotemporally complex subpicosecond crossed and chirped pulses from a Ti:sapphire oscillator. In order to display the massive resulting data files-pairs of four-dimensional intensityand-phase data-we also develop a method for generating intuitive movies of the measured pulses. With these improvements, this device and its resulting movies should be able to perform and intuitively display true singleshot spatiotemporal measurements of most current ultrashort pulses.
Brain tumor surgery involves a delicate balance between maximizing the extent of tumor resection while minimizing damage to healthy brain tissue that is vital for neurological function. However, differentiating between tumor, particularly infiltrative disease, and healthy brain in-vivo remains a significant clinical challenge. Here we demonstrate that quantitative oblique back illumination microscopy (qOBM)—a novel label-free optical imaging technique that achieves tomographic quantitative phase imaging in thick scattering samples—clearly differentiates between healthy brain tissue and tumor, including infiltrative disease. Data from a bulk and infiltrative brain tumor animal model show that qOBM enables quantitative phase imaging of thick fresh brain tissues with remarkable cellular and subcellular detail that closely resembles histopathology using hematoxylin and eosin (H&E) stained fixed tissue sections, the gold standard for cancer detection. Quantitative biophysical features are also extracted from qOBM which yield robust surrogate biomarkers of disease that enable (1) automated tumor and margin detection with high sensitivity and specificity and (2) facile visualization of tumor regions. Finally, we develop a low-cost, flexible, fiber-based handheld qOBM device which brings this technology one step closer to in-vivo clinical use. This work has significant implications for guiding neurosurgery by paving the way for a tool that delivers real-time, label-free, in-vivo brain tumor margin detection.
Multiple pulsing occurs in most ultrashort-pulse laser systems when pumped at excessively high powers, and small fluctuations in pump power in certain regimes can cause unusual variations in the temporal separations of sub-pulses. Unfortunately, the ability of modern intensity-and-phase pulse measurement techniques to measure such unstable multi-pulsing has not been studied. Here we report calculations and simulations finding that allowing variations in just the relative phase of a satellite pulse causes the second pulse to completely disappear from a spectral interferometry for direct electric field reconstruction (SPIDER) measurement. We find that, although neither frequency-resolved optical gating (FROG) nor autocorrelation can determine the precise properties of satellite pulses due to the presence of instability, they always succeed in, at least, seeing the satellite pulses. Also, additional post-processing of the measured FROG trace can determine the correct approximate relative height of the satellite pulse and definitively indicate the presence of unstable multiple-pulsing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.