The unprecedented coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious threat to global public health. Development of effective therapies against SARS-CoV-2 is urgently needed. Here, we evaluated the antiviral activity of a remdesivir parent nucleotide analog, GS441524, which targets the coronavirus RNA-dependent RNA polymerase enzyme, and a feline coronavirus prodrug, GC376, which targets its main protease, using a mouse-adapted SARS-CoV-2 infected mouse model. Our results showed that GS441524 effectively blocked the proliferation of SARS-CoV-2 in the mouse upper and lower respiratory tracts via combined intranasal (i.n.) and intramuscular (i.m.) treatment. However, the ability of high-dose GC376 (i.m. or i.n. and i.m.) was weaker than GS441524. Notably, low-dose combined application of GS441524 with GC376 could effectively protect mice against SARS-CoV-2 infection via i.n. or i.n. and i.m. treatment. Moreover, we found that the pharmacokinetic properties of GS441524 is better than GC376, and combined application of GC376 and GS441524 had a synergistic effect. Our findings support the further evaluation of the combined application of GC376 and GS441524 in future clinical studies.
AMP 579, an adenosine A /A receptor agonist, is cardioprotective when administered at reperfusion. Pretreatment with the Na /H exchanger inhibitor cariporide or ischemic preconditioning (PC) also limits infarct size. To gain insight into the mechanism of AMP 579 we investigated whether its protection could be added to that from either cariporide or PC. rabbit hearts were subjected to 45 min of regional ischemia followed by 3 h of reperfusion. Infarct size in the control group was 55.8 +/- 3.9% of the risk zone. PC significantly reduced infarct size to 26.0 +/- 6.7% (p<0.05). AMP 579 (30 micro g/kg) given just before reperfusion followed by 3 micro g/kg/min infusion for 70 min also limited infarct size (32.1 +/- 1.8%,) but the combination of AMP 579 and PC showed a significantly greater limitation of infarct size (5.5 +/- 2.7%, p < 0.05). Because cariporide pretreatment was so protective (8.5 +/- 3.7% infarction), we had to increase the ischemic insult to 60 min to test for any additive effect of the combination of AMP 579 + cariporide. Infarct size in the untreated group was 66.0 +/- 4.9% of the risk zone. Cariporide (0.5 mg/kg) 5 min prior to ischemia significantly reduced infarct size to 41.5 +/- 7.7%. When cariporide pre-treatment was combined with AMP 579 at reperfusion, infarction was further limited (14.2 +/- 4.5%). Because AMP 579's protection can be added to that of either cariporide or PC, AMP 579's mechanism of protection probably differs from either of them. The combination of AMP 579 + cariporide was particularly efficacious and could be useful in the surgical setting.
CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations.
The unprecedented coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious threat to global public health. Development of effective therapies against SARS-CoV-2 is urgently needed. Here, we evaluated the antiviral activity of a remdesivir parent nucleotide analog, GS441524, which targets the coronavirus RNA-dependent RNA polymerase enzyme, and a feline coronavirus prodrug, GC376, which targets its main protease, using a mouse-adapted SARS-CoV-2 infected mouse model. Our results showed that GS441524 effectively blocked the proliferation of SARS-CoV-2 in the mouse upper and lower respiratory tracts via combined intranasal (i.n.) and intramuscular (i.m.) treatment. However, the ability of high-dose GC376 (i.m. or i.n. and i.m.) was weaker than GS441524. Notably, low-dose combined application of GS441524 with GC376 could effectively protect mice against SARS-CoV-2 infection via i.n. or i.n. and i.m. treatment. Moreover, we found that the pharmacokinetic properties of GS441524 is better than GC376, and combined application of GC376 and GS441524 had a synergistic effect. Our findings support the further evaluation of the combined application of GC376 and GS441524 in future clinical studies.ImportanceSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has seriously threatened global public health and economic development. Currently, effective therapies to treat COVID-19 are urgently needed. In this study, we assessed the efficacy of the preclinical inhibitors GC376 and GS441524 using a mouse-adapted SARS-CoV-2 infected mouse model for the first time. Our results showed that low-dose combined application of GC376 and GS441524 could effectively protect mice from HRB26M infection in the upper and lower respiratory tracts. Hence, the combined application should be developed and considered for future clinic practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.