Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress–signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.
Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1–Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1–Ccz1–RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1–Ccz1–RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1–Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.