BackgroundRecent literatures indicate that maternal hormone exposure is a risk factor for autism spectrum disorder (ASD). We hypothesize that prenatal progestin exposure may counteract the neuroprotective effect of estrogen and contribute to ASD development, and we aim to develop a method to ameliorate prenatal progestin exposure-induced autism-like behavior.MethodsExperiment 1: Prenatal progestin exposure-induced offspring are treated with resveratrol (RSV) through either prenatal or postnatal exposure and then used for autism-like behavior testing and other biomedical analyses. Experiment 2: Prenatal norethindrone (NET) exposure-induced offspring are treated with ERβ knockdown lentivirus together with RSV for further testing. Experiment 3: Pregnant dams are treated with prenatal NET exposure together with RSV, and the offspring are used for further testing.ResultsEight kinds of clinically relevant progestins were used for prenatal exposure in pregnant dams, and the offspring showed decreased ERβ expression in the amygdala with autism-like behavior. Oral administration of either postnatal or prenatal RSV treatment significantly reversed this effect with ERβ activation and ameliorated autism-like behavior. Further investigation showed that RSV activates ERβ and its target genes by demethylation of DNA and histone on the ERβ promoter, and then minimizes progestin-induced oxidative stress as well as the dysfunction of mitochondria and lipid metabolism in the brain, subsequently ameliorating autism-like behavior.ConclusionsWe conclude that resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Our data suggest that prenatal progestin exposure is a strong risk factor for autism-like behavior. Many potential clinical progestin applications, including oral contraceptive pills, preterm birth drugs, and progestin-contaminated drinking water or seafood, may be risk factors for ASD. In addition, RSV may be a good candidate for clinically rescuing or preventing ASD symptoms in humans, while high doses of resveratrol used in the animals may be a potential limitation for human application.Electronic supplementary materialThe online version of this article (10.1186/s13229-018-0225-5) contains supplementary material, which is available to authorized users.
Purpose Policies for timing of cord clamping varied from early cord clamping (ECC) in the first 30 s after birth, to delayed cord clamping (DCC) in more than 30 s after birth or when cord pulsation has ceased. DCC, an inexpensive method allowed physiological placental transfusion. The aim of this article is to review the benefits and the potential harms of early versus delayed cord clamping. Methods Narrative overview, synthesizing the findings of the literature retrieved from searches of computerized databases. Results Delayed cord clamping in term and preterm infants had shown higher hemoglobin levels and iron storage, the improved infants’ and children’s neurodevelopment, the lesser anemia, the higher blood pressure and the fewer transfusions, as well as the lower rates of intraventricular hemorrhage (IVH), chronic lung disease, necrotizing enterocolitis, and late-onset sepsis. DCC was seldom associated with lower Apgar scores, neonatal hypothermia of admission, respiratory distress, and severe jaundice. In addition, DCC was not associated with increased risk of postpartum hemorrhage and maternal blood transfusion whether in cesarean section or vaginal delivery. DCC appeared to have no effect on cord blood gas analysis. However, DCC for more than 60 s reduced drastically the chances of obtaining clinically useful cord blood units (CBUs). Conclusion Delayed cord clamping in term and preterm infants was a simple, safe, and effective delivery procedure, which should be recommended, but the optimal cord clamping time remained controversial.
Background: Recent studies show that oxidative stress is associated with the pathogenesis of schizophrenia. There are two major types of antioxidant systems in vivo, namely enzymatic antioxidants and non-enzymatic antioxidants. This study investigated differences of non-enzymatic antioxidants between schizophrenia patients and healthy controls. Methods: Peripheral UA, ALB, and TBIL of 107 schizophrenic patients in the acute stage and 101 in the remission stage were measured respectively, so were 273 healthy controls. Results: The levels of UA (P = 0.020) and TBIL (P < 0.001) of schizophrenic patients in the acute stage were higher than those of healthy controls, while the level of ALB (P < 0.001) was lower. Similar results were detected form schizophrenic patients in the remission stage. Schizophrenic patients in the acute stage were divided into antipsychotics-use subgroup (n = 56) and antipsychotics-naïve/free subgroup (n = 51). The level of UA (P = 0.001) in the antipsychotics-use subgroup was higher than that in the antipsychotics-naïve/free subgroup, while the level of TBIL (P = 0.002) was lower than that in the antipsychotics-naïve/free subgroup. Seventy-seven schizophrenic patients in the acute stage were followed up, and there was no significant difference in the level of UA before and after treatment, but levels of ALB (P < 0.001) and TBIL (P < 0.001) decreased significantly after the treatment. Conclusion: This study demonstrated that the dysfunction of the peripheral non-enzymatic anti-oxidation system might be involved in the pathogenesis of schizophrenia.
Observational studies have shown that oxidative stress is highly related to psychiatric disorders, while its cause–effect remains unclear. To this end, a Mendelian randomization study was performed to investigate the causal relationship between oxidative stress and psychiatric disorders. On the one hand, all causal effects of oxidative stress injury biomarkers (OSIB) on psychiatric disorders were not significant (p > 0.0006), while the findings suggested that part of OSIB was nominally associated with the risk of psychiatric disorders (causal OR of uric acid (UA), 0.999 for bipolar disorder (BD), and 1.002 for attention-deficit/hyperactivity disorder (ADHD); OR of catalase was 0.903 for anorexia nervosa (AN); OR of albumin was 1.162 for autism; p < 0.05). On the other hand, major depressive disorder (MDD) was significantly associated with decreased bilirubin (p = 2.67 × 10−4); ADHD was significantly associated with decreased ascorbate (p = 4.37 × 10−5). Furthermore, there were also some suggestively causal effects of psychiatric disorders on OSIB (BD on decreased UA and increased retinol; MDD on increased UA and decreased ascorbate; schizophrenia on decreased UA, increased retinol and albumin; ADHD on increased UA, and decreased catalase, albumin, and bilirubin; AN on decreased UA). This work presented evidence of potential causal relationships between oxidative stress and psychiatric disorders.
Antipsychotic-induced hyperprolactinemia (AP-induced HPRL) occurs overall in up to 70% of patients with schizophrenia, which is associated with hypogonadism and sexual dysfunction. We summarized the latest evidence for the benefits of prolactin-lowering drugs. We performed network meta-analyses to summarize the evidence and applied Grading of Recommendations Assessment, Development, and Evaluation frameworks (GRADE) to rate the certainty of evidence, categorize interventions, and present the findings. The search identified 3,022 citations, 31 studies of which with 1999 participants were included in network meta-analysis. All options were not significantly better than placebo among patients with prolactin (PRL) less than 50 ng/ml. However, adjunctive aripiprazole (ARI) (5 mg: MD = −64.26, 95% CI = −87.00 to −41.37; 10 mg: MD = −59.81, 95% CI = −90.10 to −29.76; more than 10 mg: MD = −68.01, 95% CI = −97.12 to −39.72), switching to ARI in titration (MD = −74.80, 95% CI = −134.22 to −15.99) and adjunctive vitamin B6 (MD = −91.84, 95% CI = −165.31 to −17.74) were associated with significant decrease in AP-induced PRL among patients with PRL more than 50 ng/ml with moderated (adjunctive vitamin B6) to high (adjunctive ARI) certainty of evidence. Pharmacological treatment strategies for AP-induced HPRL depends on initial PRL level. No effective strategy was found for patients with AP-induced HPRL less than 50 ng/ml, while adjunctive ARI, switching to ARI in titration and adjunctive high-dose vitamin B6 showed better PRL decrease effect on AP-induced HPRL more than 50 ng/ml.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.