Berberine (BBR), a natural compound extracted from a Chinese herb, has been shown to effectively attenuate insulin resistance (IR) and inflammation in the clinic. However, its ameliorative mechanism against IR is not well defined. This study is aimed at investigating the effect of BBR and protein phosphatase, Mg2+/Mn2+-dependent 1B (PPM1B) on IR. Biochemical measurements and liver histopathology were detected using the biochemical analyzer and HE staining in ZDF rats, respectively. Microarray analysis of liver tissues was performed, and differentially expressed gene (DEG) levels were examined by quantitative real-time PCR (qPCR) and Western blot. Additionally, the effect of BBR was also explored in HepG2-IR cells. The glucose oxidase method and the fluorescent glucose analog were used to detect glucose consumption and uptake, respectively. The PKA inhibitor H89, ELISA, qPCR, Western blot, and immunofluorescence staining were employed to estimate the expression levels of related signaling pathways. To evaluate the roles of PPM1B, HepG2-IR cells were stably infected with lentivirus targeting PPM1B. The administration of BBR drastically decreased the body weight, urine volume, blood glucose, blood urea nitrogen (BUN), CHOL, hepatic index levels, and pathologic changes and improved ALB levels in ZDF rats with PPM1B upregulation. Furthermore, BBR effectively improves glucose consumption, uptake, and inflammation in HepG2-IR cells. The knockdown of PPM1B expression aggravated the inflammatory response and glycometabolism disorder in HepG2-IR cells. Mechanistically, a reversal in the expression of cAMP, PKA, PPM1B, PPARγ, LRP1, GLUT4, NF-κB p65, JNK, pIKKβ Ser181, IKKβ, IRS-1 Ser307, IRS-1, IRS-2 Ser731, IRS-2, PI3K p85, and AKT Ser473 contributes to ameliorate IR in HepG2-IR cells with BBR treatment. Altogether, these results suggest that BBR might regulate IR progression through the regulation of the cAMP, PKA, PPM1B, PPARγ, LRP1, GLUT4, NF-κB p65, JNK, pIKKβ Ser181, IKKβ, IRS-1 Ser307, IRS-1, IRS-2 Ser731, IRS-2, PI3K p85, and AKT Ser473 expression in the liver.
This paper describes the use of particle swarm algorithm and k-nearest neighbor method to optimize the process of radial basis function (RBF) network and we use the Denavit-Hartenberg (DH) method to research PUMA560 robotics, the results of the forward kinematics is derived as the RBF network training samples. We use six identical RBF network of twelve-input, single output, to achieve a PUMA560 inverse kinematics calculation. Simulation results show that the results obtained with this method has high accuracy and fast convergence. Keyword: k-nearest neighbor method, radial basis function network, particle swarm algorithm, PUMA560 robot, Inverse kinematicssI.
To maximize the bandwidth of green wave of trunk road is a main issue in the research of signal control in urban traffic. However, the traditional analytical algorithmcan not be applied in actual traffic widely. A novel dynamic two-direction green wave coordinate control strategy was proposed to overcome the problem. By combining the genetic BP neural network with the traditional analytical algorithm, the urban traffic of two-direction was controlled coordinately online. Finally, an actual example was presented. It shows that not only the green wave bandwidth, the phase difference of each intersection and the critical cycle of trunk road were optimized according to real-time traffic flow, but also our algorithm can be used in different traffic condition by adjusting the parameters of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.